Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phép tịnh tiến theo vecto v → ( 1 ; 1 ) biến A(0; 2) thành A’(1; 3) và biến B(-2; 1) thành B’(-1; 2) ⇒ A’B’ = √5
Đáp án A
Gọi tam giác A'B'C' là ảnh của tam giác ABC qua phép biến hình trên.
(e)Phép đồng dạng có được bằng cách thực hiện liên tiếp phép đối xứng qua trục Oy và phép vị tự tâm O tỉ số k = -2
+) Qua phép đối xứng qua trục Oy biến tam giác ABC thành tam giác A 1 B 1 C 1
Do đó, tọa độ A 1 - 1 ; 1 ; B 1 0 ; 3 v à C 1 - 2 ; 4 .
+) Qua phép vị tự tâm O tỉ số k = -2 biến tam giác A 1 B 1 C 1 thành tam giác A 2 B 2 C 2
Biểu thức tọa độ :
Tương tự; B 2 0 ; - 6 v à C 2 4 ; - 8
Vậy qua phép đối xứng trục Oy và phép vị tự tâm O tỉ số k = -2, biến các điểm A, B, C lần lượt thành
A 2 2 ; - 2 ; B 2 0 ; - 6 v à C 2 4 ; - 8 .
Gọi \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(2;2\right)\\\overrightarrow{DC}=\left(8-x;2-y\right)\end{matrix}\right.\)
\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\left\{{}\begin{matrix}8-x=2\\2-y=2\end{matrix}\right.\) \(\Rightarrow D\left(6;0\right)\)
\(\overrightarrow{DD'}=\overrightarrow{v}=\left(-2;1\right)\Rightarrow D'\left(4;1\right)\) \(\Rightarrow\overrightarrow{D'B}=\left(1;5\right)\)
\(\Rightarrow\) Đường thẳng BD' nhận \(\left(5;-1\right)\) là 1 vtpt
Pt BD': \(5\left(x-5\right)-1\left(y-6\right)=0\Leftrightarrow5x-y-19=0\)
\(\Rightarrow d\left(O;BD'\right)=\frac{\left|-19\right|}{\sqrt{5^2+\left(-1\right)^2}}=\frac{19}{\sqrt{26}}\)
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0