Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Mode 5 3 trên máy tính Casio fx-570 :
a) a=1,b=-2,c=-4
b) a=1,b=-2,c=7
bạn đặt mỗi biểu thức = 1 số bình phương ví dụ là x^2
ở câu a bn đặt xong nhân 4 lên sau đó biến đổi về 1 hằng đẳng thức
câu b thì đưa chữ sang 1 vế số sang 1 vế
câu c làm tương tự câu a
Câu 2: Nếu a,b là số nguyên tố lớn hơn 3 => a,b lẻ
vì a ;b lẻ nên a;b chia 4 dư 1 hoặc 3(vì nếu dư 2 thì a ;b chẵn) đặt a = 4k +x ; b = 4m + y
với x;y = {1;3}
ta có:
a^2 - b^2 = (a-b)(a+b) = (4k -4m + x-y)(4k +4m +x+y) =
16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y)
nếu x = 1 ; y = 3 và ngược lại thì x+y chia hết cho 4 và x-y chia hết cho 2
=> 16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8
=> a^2 - b^2 chia hết cho 8
nếu x = y thì
x-y chia hết cho 8 và x+y chia hết cho 2
=> 4(k-m)(x+y) chia hết cho 8 và 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8
=> a^2 - b^2 chia hết cho 8
vậy a^2 - b^2 chia hết cho 8 với mọi a,b lẻ (1)
ta có: a;b chia 3 dư 1 hoặc 2 => a^2; b^2 chia 3 dư 1
=> a^2 - b^2 chia hết cho 3 (2)
từ (1) và (2) => a^2 -b^2 chia hết cho 24
Tick nha TFBOYS
Bài làm:
Đặt \(a^2+a+43=x^2\)
\(\Leftrightarrow4a^2+4a+172=4x^2\)
\(\Leftrightarrow\left(4a^2+4a+1\right)+171=4x^2\)
\(\Leftrightarrow\left(2a+1\right)^2+171=4x^2\)
\(\Leftrightarrow4x^2-\left(2a+1\right)^2=171\)
\(\Leftrightarrow\left(2x-2a-1\right)\left(2x+2a+1\right)=171=1.171=3.57=9.19\)
Ta thấy \(4x^2-\left(2a+1\right)^2=171\Rightarrow2x>2a+1\), mà x là số tự nhiên nên
=> \(\hept{\begin{cases}2x-2a-1>0\\2x+2a+1>0\end{cases}}\Rightarrow2x-2a-1< 2x+2a+1\)
Ta xét các TH sau:
+ Nếu: \(\hept{\begin{cases}2x-2a-1=1\\2x+2a+1=171\end{cases}}\Rightarrow4a+2=170\Leftrightarrow4a=168\Rightarrow a=42\)
+ Nếu: \(\hept{\begin{cases}2x-2a-1=3\\2x+2a+1=57\end{cases}\Rightarrow}4a+2=54\Leftrightarrow4a=52\Rightarrow a=13\)
+ Nếu: \(\hept{\begin{cases}2x-2a-1=9\\2x+2a+1=19\end{cases}}\Rightarrow4a+2=10\Leftrightarrow4a=8\Rightarrow a=2\)
Vậy \(a\in\left\{2;13;42\right\}\) thì a2+a+43 là số chính phương