K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

26 tháng 9 2021

Mode 5 3 trên máy tính Casio fx-570 :

a) a=1,b=-2,c=-4

b) a=1,b=-2,c=7 

 

 

 

19 tháng 12 2015

Câu 2: Nếu a,b là số nguyên tố lớn hơn 3 => a,b lẻ

vì a ;b lẻ nên a;b chia 4 dư 1 hoặc 3(vì nếu dư 2 thì a ;b chẵn) đặt a = 4k +x ; b = 4m + y 
với x;y = {1;3} 
ta có: 
a^2 - b^2 = (a-b)(a+b) = (4k -4m + x-y)(4k +4m +x+y) = 
16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y) 
nếu x = 1 ; y = 3 và ngược lại thì x+y chia hết cho 4 và x-y chia hết cho 2 
=> 16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8 
=> a^2 - b^2 chia hết cho 8 
nếu x = y thì 
x-y chia hết cho 8 và x+y chia hết cho 2 
=> 4(k-m)(x+y) chia hết cho 8 và 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8 
=> a^2 - b^2 chia hết cho 8 
vậy a^2 - b^2 chia hết cho 8 với mọi a,b lẻ (1) 
ta có: a;b chia 3 dư 1 hoặc 2 => a^2; b^2 chia 3 dư 1 
=> a^2 - b^2 chia hết cho 3 (2) 
từ (1) và (2) => a^2 -b^2 chia hết cho 24 
Tick nha TFBOYS

27 tháng 7 2023

Số p4 có 5 ước số tự nhiên là 1 , p, p2 , p3 , p4
Ta có : 1 + p + p2 + p3 + p4 = n2     (n  N)
Suy ra : 4n= 4p+ 4p+ 4p+ 4p + 4 > 4p+ 4p+ p= (2p+ p)2
Và  4n2 < 4p+ p2 + 4 + 4p+ 8p+ 4p = (2p+ p + 2)2.
Vậy : (2p+ p)< (2n) < (2p+ p + 2)2.
Suy ra :(2n)2 = (2p+ p + 2)2 = 4p+ 4p+5p+ 2p + 1

vậy 4p + 4p+5p+ 2p + 1 = 4p+ 4p+4p+4p + 4   (vì cùng bằng 4n2 )

=> p- 2p - 3 = 0  => (p + 1) (p - 3) = 0

do p > 1  => p - 3 = 0   => p = 3

14 tháng 7 2016

Ta có: \(n^4+n^3+n^2=n^2\left(n^2+n+1\right)\)

Theo đề ra thì \(n^2\left(n^2+n+1\right)\) mà \(n^2\)là một số chính phương \(\Rightarrow n^2+n+1\)là 1 số chính phương.

Gọi \(n^2+n+1=k^2\) =>\(4n^2+4n+1+3\)\(4k^2\)

=> \(\left(2n+1\right)^2+3=4k^2\) => \(\left(2k-2n-1\right)\left(2k+2n+1\right)=3\)

\(\Leftrightarrow2k-2n-1;2k+2n+1\inƯ\left(3\right)=\left\{3;1;-3;-1\right\}\)Và \(2k-2n-1;2k+2n+1\)phải đồng âm hoặc đồng dương,

Ta có bảng sau: 

\(2k-2n-1\)13-1-3
\(2k+2n+1\)31-3-1
\(2k-2n\)240-2
\(2k+2n\)20-4-2
\(n\)0-1-10

Vậy n thỏa mãn đề bài là n=0 hoặc n=-1

28 tháng 2 2021

`k^2-k+10`

`=(k-1/2)^2+9,75>9`

`k^2-k+10` là số chính phương nên đặt

`k^2-k+10=a^2(a>3,a in N)`

`<=>4k^2-4k+40=4a^2`

`<=>(2k-1)^2+39=4a^2`

`<=>(2k-1-2a)(2k-1+2a)=-39`

`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`

`2k+2a>6`

`=>2k+2a-1> 5`

`=>2k+2a-1=39,2k-2a-1=-1`

`=>2k+2a=40,2k-2a=0`

`=>a=k,4k=40`

`=>k=10`

Vậy `k=10` thì `k^2-k+10` là SCP

28 tháng 2 2021

`+)2k+2a-1=13,2k-2a-1=-3`

`=>2k+2a=14,2k-2a=-2`

`=>k+a=7,k-a=-1`

`=>k=3`

Vậy `k=3` hoặc `k=10` thì ..........

18 tháng 12 2020

Đặt a=n^2, b=k^2 Để thay b-a=k^2-n^2=1111=101*11 =>(k-n)(k+n)=101*11 Giải hệ (k+n=101 ;k-n=11) =>k=56;n=45 a=2025;b=3136