Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/2 = b/3 = c/4 =>a^2/4 = b^2/9 =2c^2/32
Áp dụng dãy tỉ số bằng nau ta có :
a^2/4 = b^2/9 = 2c^2/32 = a^2-b^2+2c^2/4-9+32 = 108/27 = 4
=> a= 4.2 = 8
=> b = 4.3 = 12
=> c = 4.4 = 16
Vậy............
Áp dụng t/c của dãy tỉ số bằng nhau , ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) => \(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
=> \(\hept{\begin{cases}\frac{a^2}{4}=4\\\frac{b^2}{9}=4\\\frac{c^2}{16}=4\end{cases}}\) <=> \(\hept{\begin{cases}a^2=16\\b^2=36\\c^2=64\end{cases}}\) <=> \(\hept{\begin{cases}a=\pm4\\b=\pm6\\c=\pm8\end{cases}}\)
1.
a:b:c:d = 2:3:4:5 => \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
=> a = -3.2 = -6
b = -3.3 = -9
c = -3.4 = -12
d = -3.5 = -15
2.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{18}=\frac{a+2b-3c}{2+6-18}=-\frac{20}{-10}=2\)
=> a = 4
b = 6
c = 8
3.
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
=> a2 = 4.4 = 16 => a = +-4
b2 = 4.9 = 36 => b = +-6
2c2 = 4.32 = 128 => c2 = 64 => c = +-8
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{a^2}{2^2}=\frac{b^2}{3^2}=\frac{2c^2}{2.4^2}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a^2}{2^2}=\frac{b^2}{3^2}=\frac{2c^2}{2.4^2}=\frac{a^2-b^2+2c^2}{4-9+2.4^2}=\frac{108}{27}=4=2^2\)
\(\Rightarrow\begin{cases}a^2=2^2.2^2=4^2\\b^2=2^2.3^2=6^2\\c^2=2^2.2.4^2:2=8^2\end{cases}\)\(\Rightarrow\begin{cases}a\in\left\{4;-4\right\}\\b\in\left\{6;-6\right\}\\c\in\left\{8;-8\right\}\end{cases}\)
Vậy giá trị (a;b;c) thỏa mãn đề bài là: (4;6;8) ; (-4;-6;-8)
Giải:
Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\)
\(\Rightarrow a=2k,b=3k,c=4k\)
Ta có: \(a^2-b^2+2c^2=108\)
\(\Rightarrow\left(2k\right)^2-\left(3k\right)^2+2\left(4k\right)^2=108\)
\(\Rightarrow2^2.k^2-3^2.k^2+2.4^2.k^2=108\)
\(\Rightarrow4.k^2-9.k^2+32.k^2=108\)
\(\Rightarrow\left(4-9+32\right).k^2=108\)
\(\Rightarrow27.k^2=108\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2\)
+) \(k=2\Rightarrow a=4,b=6,d=8\)
+) \(k=-2\Rightarrow a=-4,b=-6,c=-8\)
Vậy bộ số \(\left(a;b;c\right)\) là \(\left(4;6;8\right);\left(-4;-6;-8\right)\)
a/2 = b/3 = c/4 =>a^2/4 = b^2/9 =2c^2/32
Áp dụng dãy tỉ số bằng nau ta có :
a^2/4 = b^2/9 = 2c^2/32 = a^2-b^2+2c^2/4-9+32 = 108/27 = 4
=> a= 4.2 = 8
=> b = 4.3 = 12
=> c = 4.4 = 16
\(\frac{a}{5}=\frac{b}{4}\\ \Rightarrow\frac{a^2}{25}=\frac{b^2}{16}=\frac{a^2-b^2}{25-16}=\frac{1}{9}\\ \Rightarrow a^2=\frac{25}{9}\\ \Rightarrow a=\frac{5}{3}\)
tự tính b nhé
b) Câu b tương tự câu a .
Nếu ko biết hỏi mình
CÁC BÀI NÀY ĐỀU GIẢI THEO TÍNH CHẤT DÃY TỈ SỐ BẮNG NHAU
a) ta có: 2a = 3b; 5b = 7c
\(\Rightarrow\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}\left(1\right);\frac{b}{14}=\frac{c}{10}\left(2\right)\)
VẾ (1) nhân cả 2 số với\(\frac{1}{7}\); VẾ (2) nhân cả hai số với \(\frac{1}{2}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
\(\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
ÁP DỤNG T/C DÃY TỈ SỐ BẰNG NHAU, TA CÓ:
\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)
PHẦN SAU TỰ LÀM^-^
c) ÁP DỤNG T/C DÃY TỈ SỐ BẰNG NHAU TA CÓ:
\(\frac{a}{3}=\frac{b+1}{4}=\frac{c+2}{5}=\frac{a-b-1+c+2}{3-4+5}=\frac{a-b+c+1}{4}=\frac{-17}{4}\)
PHẦN SAU TỰ LÀM^-^
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
\(\Rightarrow\frac{a^2}{2^2}=\frac{b^2}{3^2}=\frac{2c^2}{2.4^2}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
=> \(\frac{a^2}{4}=4\Rightarrow a^2=16\Rightarrow a=+-4\)
=> \(\frac{b^2}{9}=4\Rightarrow b^2=36\Rightarrow b=+-6\)
=>\(\frac{2c^2}{2.4^2}=4\Rightarrow c^2=16.4=64\Rightarrow c=+-8\)
Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k=>a=2k;b=3k;c=4k\)
Thay vào \(a^2+b^2+2c^2=108\) rồi tính k => tìm đc a,b,c