K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2021

\(\dfrac{b}{2}=\dfrac{c}{5}\Rightarrow\dfrac{b}{4}=\dfrac{c}{10}\)

\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{10}=\dfrac{a-c+b}{3-10+4}=\dfrac{3}{-3}=-1\)

\(\Rightarrow\left\{{}\begin{matrix}a=\left(-1\right).3=-3\\b=\left(-1\right).4=-4\\c=\left(-1\right).10=-10\end{matrix}\right.\)

21 tháng 2 2023

b) Ta có : \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\)

\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a+b+c}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Khi đó \(a=12.\dfrac{3}{2}=18;b=12.\dfrac{4}{3}=16;c=12.\dfrac{5}{4}=15\)

Vậy (a,b,c) = (18,16,15) 

16 tháng 9 2021

Ta có: \(\dfrac{a}{3}=\dfrac{b}{4}\)

          \(\dfrac{b}{2}=\dfrac{c}{5}\Rightarrow\dfrac{b}{4}=\dfrac{c}{10}\)

\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{10}=\dfrac{a-c+b}{3-10+4}=\dfrac{3}{-3}=-1\)

\(\Rightarrow\left\{{}\begin{matrix}a=\left(-1\right).3=-3\\b=\left(-1\right).4=-4\\c=\left(-1\right).10=-10\end{matrix}\right.\)

16 tháng 9 2021

hay quá

22 tháng 10 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{a-b-c}{8-12-15}=\dfrac{28}{-19}=\dfrac{-28}{19}\)

Do đó: \(\left\{{}\begin{matrix}a=\dfrac{-224}{19}\\b=\dfrac{-336}{19}\\c=\dfrac{-420}{19}\end{matrix}\right.\)

29 tháng 12 2020

a) \(\dfrac{a}{5}=\dfrac{b}{4}\Rightarrow\dfrac{a^2}{25}=\dfrac{b^2}{16}\)

Áp dụng tính chất DTSBN :

\(\dfrac{a^2}{25}=\dfrac{b^2}{16}=\dfrac{a^2-b^2}{25-16}=\dfrac{1}{9}\)

\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{1}{9}\cdot25=\dfrac{25}{9}\\b^2=\dfrac{1}{9}\cdot16=\dfrac{16}{9}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3};b=\dfrac{4}{3}\\a=\dfrac{-5}{3};b=-\dfrac{4}{3}\end{matrix}\right.\)

Vậy \(\left(a;b\right)\in\left\{\left(\dfrac{5}{3};\dfrac{4}{3}\right);\left(-\dfrac{5}{3};-\dfrac{4}{3}\right)\right\}\)

b) \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}\)

Áp dụng tính chất DTSBN :

\(\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{2c^2}{32}=\dfrac{a^2-b^2+2c^2}{4-9+32}=\dfrac{108}{27}=4\)

\(\Rightarrow\left\{{}\begin{matrix}a^2=4.4=16\\b^2=4.9=36\\c^2=4,16=64\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=4;=6;c=8\\a=-4;b=-6;c=-8\end{matrix}\right.\)

Vậy (a;b;c) \(\in\left\{\left(4;6;8\right);\left(-4;-6;-8\right)\right\}\)

 

18 tháng 4 2021

Ta có:\(\dfrac{x^2}{4}=\dfrac{x}{2};\dfrac{y^2}{9}=\dfrac{y}{3};\dfrac{z^2}{25}=\dfrac{z}{5}\)

Aps dụng tính chất dãy tỉ số bằn nhau:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)

=>\(\dfrac{x}{2}=1=>x=2\)

  \(\dfrac{y}{3}=1=>y=3\)

\(\dfrac{z}{5}=1=>z=5\)

Vậy x=2, y=3, z=5

18 tháng 4 2021

Ta có : \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được : 

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)

\(\Leftrightarrow x=2;y=3;z=5\)

Các bạn làm nhanh lên nhé mình đang rất vội và đừng quên trả lời từng bước nhé ! (Phần 1)Câu 1) Tìm số a,b,c cho biết !1)\(\dfrac{a}{5}=\dfrac{b}{4}\) và \(a^2-b^2=1\)2)\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\) và \(a^2-b^2+c2^2\)=108Câu  2) Tìm giá trị của các biểu thức sau ?1)\(3\times\left|1-2x\right|-5\)2)\(\left(2^2x^2+1\right)^4-3\)3)\(\left|x-\dfrac{1}{2}\right|+\left(y+2\right)^2+11\)(Lưu ý : Đoạn này các bạn sẽ bị mỏi tay đấy)Câu 3) Tính...
Đọc tiếp

Các bạn làm nhanh lên nhé mình đang rất vội và đừng quên trả lời từng bước nhé ! (Phần 1)

Câu 1) Tìm số a,b,c cho biết !

1)\(\dfrac{a}{5}=\dfrac{b}{4}\) và \(a^2-b^2=1\)

2)\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\) và \(a^2-b^2+c2^2\)=108

Câu  2) Tìm giá trị của các biểu thức sau ?

1)\(3\times\left|1-2x\right|-5\)

2)\(\left(2^2x^2+1\right)^4-3\)

3)\(\left|x-\dfrac{1}{2}\right|+\left(y+2\right)^2+11\)

(Lưu ý : Đoạn này các bạn sẽ bị mỏi tay đấy)

Câu 3) Tính số học sinh của các lớp 7a và 7b .Biết lớp 7a ít hơn 7b là 5 học sinh và tỉ số học sinh của hai lớp là 8;9.

Câu 4) Hưởng ứng phong trò nhỏ của liên đội,ba chi đội 6a,6b,6c đã thu được tổng 120kg giấy vụn.Biết rằng số giấy vụn thu được của ba chi đội lần lượt tỉ lệ với 9;7;8.Hãy tính số giấy vụn thu được của các chi đội thu được ?

Câu 5) Cho biết hai đại lượng x và y tỉ lệ thuận với nhau và khi x = -6 thì y = 3.

A) Tìm hệ số tỉ lệ y đối với x

B) Hãy biểu diễn y theo x và biểu diễn x theo y

C) Tính giá trị của y theo x = \(\dfrac{1}{2}\)

D) Tính giá trị của x khi y = -8

còn tiếp ➜

1
10 tháng 12 2023

Câu 5:

a: Hệ số tỉ lệ k của y đối với x là:

\(k=\dfrac{y}{x}=\dfrac{3}{-6}=-\dfrac{1}{2}\)

b: \(\dfrac{y}{x}=-\dfrac{1}{2}\)

=>\(y=-\dfrac{1}{2}x\)

=>\(x=\dfrac{\left(-2\right)\cdot y}{1}=-2y\)

c: Khi x=1/2 thì \(y=-\dfrac{1}{2}\cdot\dfrac{1}{2}=-\dfrac{1}{4}\)

d: Khi y=-8 thì \(x=\left(-2\right)\cdot\left(-8\right)=16\)

Câu 3:

Gọi số học sinh của hai lớp 7A và 7B lần lượt là a(bạn) và b(bạn)

(Điều kiện: \(a,b\in Z^+\))

Lớp 7A có ít hơn lớp 7B là 5 bạn nên b-a=5

Số học sinh của lớp 7A và lớp 7B lần lượt tỉ lệ với 8 và 9 nên ta có

\(\dfrac{a}{8}=\dfrac{b}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{8}=\dfrac{b}{9}=\dfrac{b-a}{9-8}=\dfrac{5}{1}=5\)

=>\(a=5\cdot8=40;b=5\cdot9=45\)

Vậy: Lớp 7A có 40 bạn; lớp 7B có 45 bạn

Câu 4:

Gọi khối lượng giấy vụn lớp 6a,6b,6c quyên góp được lần lượt là a(kg),b(kg),c(kg)

(Điều kiện: a>0;b>0;c>0)

Vì khối lượng giấy vụn mà ba lớp 6a,6b,6c quyên góp được lần lượt tỉ lệ với 9;7;8 nên \(\dfrac{a}{9}=\dfrac{b}{7}=\dfrac{c}{8}\)

Tổng khối lượng giấy vụn ba lớp quyên góp được là 120kg nên a+b+c=120

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{9}=\dfrac{b}{7}=\dfrac{c}{8}=\dfrac{a+b+c}{9+7+8}=\dfrac{120}{24}=5\)

=>\(a=5\cdot9=45;b=5\cdot7=35;c=8\cdot5=40\)

Vậy: Lớp 6a quyên góp được 45kg; lớp 6b quyên góp được 35kg; lớp 6c quyên góp được 40kg

24 tháng 4 2023

\(\dfrac{a}{3}=\dfrac{b}{2};\dfrac{b}{6}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a}{9}=\dfrac{b}{6};\dfrac{b}{6}=\dfrac{c}{5}\)

\(\Rightarrow\dfrac{a}{9}=\dfrac{b}{6}=\dfrac{c}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{9}=\dfrac{b}{6}=\dfrac{c}{5}=\dfrac{a+b+c}{9+6+5}=\dfrac{-40}{20}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}a=-2\cdot9=-18\\b=-2\cdot6=-12\\c=-2\cdot5=-10\end{matrix}\right.\)

23 tháng 12 2020

a) Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}\)

\(\Leftrightarrow\dfrac{a}{8}=\dfrac{b}{12}\)(1)

Ta có: \(\dfrac{b}{4}=\dfrac{c}{5}\)

nên \(\dfrac{b}{12}=\dfrac{c}{15}\)(2)

Từ (1) và (2) suy ra \(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}\)

mà a+b+c=2 

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{a+b+c}{8+12+15}=\dfrac{2}{35}\)

Do đó: 

\(\left\{{}\begin{matrix}\dfrac{a}{8}=\dfrac{2}{35}\\\dfrac{b}{12}=\dfrac{2}{35}\\\dfrac{c}{15}=\dfrac{2}{35}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{16}{35}\\b=\dfrac{24}{35}\\c=\dfrac{30}{35}=\dfrac{6}{7}\end{matrix}\right.\)

Vậy: \(a=\dfrac{16}{35}\)\(b=\dfrac{24}{35}\)\(c=\dfrac{6}{7}\)

b) Ta có: 2a=3b=5c

nên \(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}\)

mà a+b-c=3

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được: 

\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}=\dfrac{a+b-c}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}=\dfrac{3}{\dfrac{19}{30}}=\dfrac{90}{19}\)

Do đó: 

\(\left\{{}\begin{matrix}2a=\dfrac{90}{19}\\3b=\dfrac{90}{19}\\5c=\dfrac{90}{19}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{45}{19}\\b=\dfrac{30}{19}\\c=\dfrac{18}{19}\end{matrix}\right.\)

Vậy: \(a=\dfrac{45}{19}\)\(b=\dfrac{30}{19}\)\(c=\dfrac{18}{19}\)

Đặt a/2=b/3=c/4=k

=>a=2k; b=3k; c=4k

Ta có: \(a^2+3b^2-2c^2=-16\)

\(\Leftrightarrow4k^2+27k^2-32k^2=-16\)

\(\Leftrightarrow k^2=16\)

Trường hợp 1: k=4

=>a=8; b=12; c=16

Trường hợp 2: k=-4

=>a=-8; b=-12; c=-16