Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{5}{2}=\dfrac{1}{6}+\dfrac{b}{3}\)
\(\Leftrightarrow\dfrac{5}{2a}-\dfrac{1}{6}-\dfrac{b}{3}=0\)
msc : 18a
\(\Leftrightarrow\dfrac{45}{18a}-\dfrac{3a}{18a}-\dfrac{6ab}{18a}=0\)
\(\Leftrightarrow45-3a-6ab=0\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{15}{1+2b}\\b=\dfrac{15}{2a}-\dfrac{1}{2}\end{matrix}\right.\)
a) \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{1}{a-b}\left(đk:a,b\ne0,a\ne b\right)\Leftrightarrow\dfrac{b-a}{ab}=\dfrac{1}{a-b}\)
\(\Leftrightarrow-\left(a-b\right)^2=ab\Leftrightarrow a^2-ab+b^2=0\)
\(\Leftrightarrow\left(a^2-ab+\dfrac{1}{4}b^2\right)+\dfrac{3}{4}b^2=0\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2+\dfrac{3}{4}b^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a-\dfrac{1}{2}b=0\\\dfrac{3}{4}b^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}b\\b=0\end{matrix}\right.\) \(\Leftrightarrow a=b=0\left(ktm\right)\)
Vậy k có a,b thõa mãn
b) \(\dfrac{5}{2a}=\dfrac{1}{6}+\dfrac{b}{3}\left(a\ne0\right)\Leftrightarrow\dfrac{2b+1}{6}-\dfrac{5}{2a}=0\Leftrightarrow\dfrac{a\left(2b+1\right)-15}{6a}=0\)
\(\Leftrightarrow a\left(2b+1\right)-15=0\Leftrightarrow a\left(2b+1\right)=15\)
Do \(a,b\in Z,a\ne0\) nên ta có bảng sau:
a | 1 | -1 | 15 | -15 | 3 | -3 | 5 | -5 |
2b+1 | 15 | -15 | 1 | -1 | 5 | -5 | 3 | -3 |
b | 7(tm) | -8(tm) | 0(tm | -1(tm) | 2(tm) | -3(tm) | 1(tm) | -2(tm) |
Vậy...
Đáp án:
(b,a)∈{(3,8),(7,4),(1,−2),(−3,2)}(b,a)∈{(3,8),(7,4),(1,−2),(−3,2)}
Các bước giải:
ab+1=2a+3bab+1=2a+3b
→(ab−3b)+1=(2a−6)+6→(ab−3b)+1=(2a−6)+6
→b(a−3)=2(a−3)+5→b(a−3)=2(a−3)+5
→b(a−3)−2(a−3)=5→b(a−3)−2(a−3)=5
→(b−2)(a−3)=5→(b−2)(a−3)=5
→(b−2,a−3)∈U(5)={(1,5),(5,1),(−1,−5),(−5,−1)}→(b−2,a−3)∈U(5)={(1,5),(5,1),(−1,−5),(−5,−1)}
→(b,a)∈{(3,8),(7,4),(1,−2),(−3,2)}→(b,a)∈{(3,8),(7,4),(1,−2),(−3,2)}
#Châu's ngốc
Để \(\frac{3}{2a-5}\) thuộc Z
Thì 3 chia hết cho 2a - 5
=> 2a - 5 thuộc Ư(3) = {-3;-1;1;3}
Ta có bảng :
2a - 5 | -3 | -1 | 1 | 3 |
2a | 2 | 4 | 6 | 8 |
a | 1 | 2 | 3 | 4 |
Ta có: \(\frac{3}{2a-5}\in Z\)
\(\Rightarrow3⋮2a-5\Rightarrow\left(2a-5\right)\inƯ\left(3\right)\)
\(Ư\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow2a-5\in\left\{-3;-1;1;3\right\}\)
\(\cdot2a-5=-3\Rightarrow a=\left(-3+5\right):2=1\)
\(\cdot2a-5=-1\Rightarrow a=2\)
\(\cdot2a-5=1\Rightarrow a=3\)
\(\cdot2a-5=3\Rightarrow a=4\)
Tất cả đều thỏa mãn a \(\in z\)
\(\Rightarrow a\in\left\{1;2;3;4\right\}\)
a) Để A và n thuộc Z => n+1 chia hết cho n-2
A=(n-2+3) chia hết cho n-2
=> 3 chia hết cho n-2
lập bảng=> n thuộc {3,1,5,9,(-1)}
b) A lớn nhất khi n-2 nhỏ nhất=> n-2=1
=> n=3
Nhớ tk cho mk nha!
tui chịu
tí nữa giải cho