Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{15a-10b}{25}=\frac{6c-15a}{9}\)
\(=\frac{15a-10b+6c-15a}{25+9}=\frac{6c-10b}{34}=\frac{3c-5b}{17}=\frac{5b-3c}{2}\) = 0
=> a+b+c = 5a = - 50 => a = -10; b = -15 ; c = -25
Tìm các số a, b, c biết rằng :
1 . Ta có: \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}=\frac{a}{20}=\frac{2b}{9.2}=\frac{4c}{6.4}=\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)
Ap dụng tính chất dãy tỉ số bắng nhau ta dược :
\(\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)=\(\frac{a-2b+4c}{20-18+24}=\frac{13}{26}=\frac{1}{3}\)( do x+2b+4c=13)
Nên : a/20=1/3\(\Leftrightarrow\) a=1/3.20 \(\Leftrightarrow\)a=20/3
b/9=1/3 \(\Leftrightarrow\) b=1/3.9 \(\Leftrightarrow\) b=3
c/6=1/3 \(\Leftrightarrow\) c=1/3.6 \(\Leftrightarrow\) c= 2
Từ đẳng thức \(\frac{a-1}{5}=\frac{b-2}{3}=\frac{c-2}{2}\)
\(\Rightarrow\frac{a-1}{5}=\frac{2b-4}{6}=\frac{c-2}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a-1}{5}=\frac{b-2}{3}=\frac{c-2}{2}=\frac{2b-4}{6}=\frac{a-1+2b-4-c+2}{5+6-2}=\frac{\left(a+2b-c\right)-3}{9}\)
\(=\frac{6-3}{9}=\frac{1}{3}\)
\(\Rightarrow a=\frac{5.1}{3}+1=\frac{5}{3}+1=\frac{8}{3};\)
\(b=\frac{3.1}{3}+2=1+2=3;\)
\(c=\frac{2.1}{3}+2=\frac{2}{3}+2=\frac{8}{3}\)
Vậy \(a=\frac{8}{3};b=3;c=\frac{8}{3}\)
viết lại đề bài
=> \(\frac{a-1}{5}=\frac{2\left(b-2\right)}{6}=\frac{c-2}{2}\)
ÁP DỤNG TÍNH CHẤT DÃU TỈ SỐ BẰNG NHAU TA CÓ:
\(\frac{a-1}{5}=\frac{2b-4}{6}=\frac{c-2}{2}=\frac{a-1+2b-2-c-2}{5+6-2}=\frac{a+2b-c-1-2-2}{9}\)
=> \(\frac{6-1-2-2}{9}=\frac{1}{9}\)
+ \(\frac{a-1}{5}=\frac{1}{9}=>a=\frac{14}{9}\)
tương tự tìm b,c
* học tốt nha #
Áp dụng tích chất dãy tỉ số bằng nhau ta có :
\(\frac{a-1}{5}=\frac{b-2}{3}=\frac{c-2}{2}=\frac{2b-4}{6}=\frac{a-1+2b-4-c+2}{5+6-2}=\frac{a+2b-c-3}{9}=\frac{3}{9}=\frac{1}{3}\)
\(\Rightarrow\hept{\begin{cases}a-1=\frac{1}{3}.5=\frac{5}{3}\Rightarrow a=\frac{8}{3}\\b-2=\frac{1}{3}.3=1\Rightarrow b=3\\c-2=\frac{1}{3}.2=\frac{2}{3}\Rightarrow c=\frac{8}{3}\end{cases}}\)
P/s : Lm đại :)) Sai bỏ qa :>
Đặt a-1/5=b-2/3=c-2/2=k
Suy ra:a=5k+1
b=3k+2
c=2k+2
Thay vào ta có:
5k+1+2(3k+2)-2k-2=6(đổi dấu đúng nhé)
(=)5k+1+6k+4-2k-2=6(=)9k+3=6(=)9k=9(=)k=1
Suy ra a=6,b=5,c=4.( cho mình nhé)
i) Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow\begin{cases}a=2k\\b=3k\\c=4k\end{cases}\)
Vì a3 + b3 + c3 = 792 => 8k3 + 27k3 + 64k3 = 792 => 99k3 = 792 => k3 = 8 => k = 2
=> \(\begin{cases}a=4\\b=6\\c=8\end{cases}\)
Bài g tương tự bài i
e) Từ 3a = 7b => \(\frac{a}{7}=\frac{b}{3}\)
Đặt \(k=\frac{a}{7}=\frac{b}{3}\Rightarrow\begin{cases}a=7k\\b=3k\end{cases}\)
Vì a2 - b2 = 160 => 49k2 - 9k2 = 160 => 40k2 = 160 => k = 2 hoặc -2
Với k = 2 => \(\begin{cases}a=14\\b=6\end{cases}\)
Với k = -2 => \(\begin{cases}a=-14\\b=-6\end{cases}\)
Đặt \(\frac{a}{6}=\frac{b}{-4}=k\)
\(\Rightarrow\hept{\begin{cases}a=6k\\b=-4k\end{cases}}\Rightarrow\hept{\begin{cases}a^2=\left(6k\right)^2\\b^2=\left(-4k\right)^2\end{cases}}\)
=> a2 - b2 = 5
=> (6k)2 - (-4k)2 = 5
=> 36k2 - 16k2 = 5
=> 20k2 = 5
=> k2 = 1/4
=> \(\orbr{\begin{cases}k=\frac{1}{2}\\k=\frac{-1}{2}\end{cases}}\)
=> +) a = 6k = 6 x 1/2 = 3
+) a = 6k = 6 x (-1/2) = -3
=> +) b = -4k = -4 . 1/2 = -2
+) b = -4k = -4 . (-1/2) = 2
P/s: Ko chắc >:
Giải
\(\frac{a}{6}=\frac{b}{-4}=\frac{a^2}{6^2}=\frac{b^2}{\left(-4\right)^2}=\frac{a^2}{36}=\frac{b^2}{16}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a^2}{36}=\frac{b^2}{16}=\frac{a^2-b^2}{36-16}=\frac{5}{20}=\frac{1}{4}\)
\(\frac{a^2}{36}=\frac{1}{4}\Rightarrow a^2=9\Rightarrow a=3\)
\(\frac{b^2}{16}=\frac{1}{4}\Rightarrow b^2=4\Rightarrow b=2\)
Vậy các số cần tìm là: a=3; b=2