K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2016

Đặt fx=x3-3x2+ax

Để fx chia hết cho x+2<=> tồn tại một đa thức gx sao cho fx=gx.(x+2)

=>x3-3x2+ax=gx.(x+2) với mọi x  (1)

Thay x=-2 vào (1) ta được (-23)-3.(-2)2+a.(-2)=0

                                       <=>-8+12-2a=0

                                       <=>2a=4

                                        <=>a=2

3 tháng 11 2019

x^2+5 x^4+2x^3+10x+a x^2+2x-5 x^4+5x^2 2x^3-5x^2+10x+a 2x^3 +10x -5x^2+a -5x^2-25 a+25

Để  x4+2x3+10x+a chia hết cho đa thức x2+5 thì

\(a+25=0\Leftrightarrow a=-25\)

8 tháng 11 2017

ta có:x2-3x+2+ax+b=(x2-3x+2).Q(x)

                             =(x-1)(x-2).Q(x)

thay x=1 =>a+b=0(1)

thay x=2 =>2a+b=0(2)

lấy (2) - (1) =>a=0=>b=0

21 tháng 2 2019

sao nhiều bt vại , sao làm hết nổi !!!!! ~ _~

14 tháng 10 2016

phân tích đa thức  x2 - 3x +2 thành nhân tử đi 

11 tháng 6 2017

Đa thức thương có dạng: \(q\left(X\right)=x^2+cx+d\)

Ta có: \(x^4+ax^2+b=\left(x^2-3x+2\right)\left(x^2+cx+d\right)\)

      \(=x^4+\left(c-3\right)x^3+\left(d+2-3c\right)x^2+\left(2c-3d\right)x+2d\)

Đồng nhất ta được các hệ số tương ứng bằng nhau:

\(\hept{\begin{cases}c-3=0\\d+2-3c=a\end{cases}}\)

\(\hept{\begin{cases}2c-3d=0\\2d=b\end{cases}}\)

\(\Leftrightarrow a=-5,b=4,c=3,d=2\)

Khi đó: \(q\left(x\right)=x^2+3x+2\)

DD
23 tháng 10 2021

\(f\left(x\right)=2x^3+3x^2-10x+a\)

\(f\left(x\right)\)chia hết cho \(x-2\)nên \(f\left(x\right)=\left(x-2\right).q\left(x\right)\)(\(q\left(x\right)\)là đa thức thương) 

suy ra \(f\left(2\right)=0\)

\(\Rightarrow2.2^3+3.2^2-10.2+a=0\)

\(\Leftrightarrow a=-8\)

23 tháng 10 2021

Áp dụng định lý Bezout

\(f\left(2\right)=2.2^3+3.2^2-10.2+a=8+a\)

Mà để cho \(2x^3+3x^2-10x+a⋮x-2\)

\(\Rightarrow f\left(2\right)=0\)

\(\Rightarrow8+a=0\)

\(\Rightarrow a=-8\)

Vậy \(a=-8\) để \(2x^3+3x^2-10x+a⋮x-2\)

16 tháng 10 2016

Đặt phép chia ta thấy A(x) chia cho B(x) được x^2-2x-1/2 và dư m-3/2

Để A(x) chia hết cho B(x) thì m-3/2=0 <=> m=3/2

(bạn biết cách chia đa thức một biến rồi chứ)
 

3 tháng 11 2019

Đa thức \(x^2-1\)có nghiệm \(\Leftrightarrow x^2-1=0\)

\(\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)

-1 và 1 là hai nghiệm của đa thức \(x^2-1\)

Để đa thức \(2x^3-x^2+ax+b\)chia hết cho đa thức \(x^2-1\)thì -1 và 1 cũng là hai nghiệm của đa thức \(2x^3-x^2+ax+b\)

Nếu x = -1 thì \(-2-1-a+b=0\Leftrightarrow a-b=-3\)(1)

Nếu x = 1 thì \(2-1+a+b=0\Leftrightarrow a+b=-1\)(2)

Từ (1) và (2) suy ra \(\hept{\begin{cases}a=\frac{-3-1}{2}=-2\\b=\frac{-1+3}{2}=1\end{cases}}\)

Vậy a = -2, b = 1