Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (7x - 11)3 = 25 x 52 + 200
(7x - 11)3 = 800 + 200
(7x - 11)3 = 1000
(7x - 11)3 = 103
=> 7x - 11 = 10
=> 7x = 10 + 11
=> 7x = 21
=> x = 3
b) \(3\frac{1}{3}x+16\frac{3}{4}=-13,25\)
\(3\frac{1}{3}x=-13,25-16\frac{3}{4}\)
\(\frac{10}{3}x=-30\)
\(x=-9\)
minh moi biet suon y cua cau 1 thoi . cac ban giup minh nha.
SUON Y : 62,5%anh -75%em=2 (1)
a-37,5%em=7 (2)
=> anh=7+37,5%em
thay (1)62,5%(7+\(\frac{37,5}{100}\)em)-\(\frac{75}{100}\)em=2
Bài 3:
a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)
2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)
2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)
3A = \(1-\frac{1}{2^6}\)
=> 3A < 1
=> A < \(\frac{1}{3}\)(đpcm)
b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)
4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\) (1)
Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)
4B = \(3-\frac{1}{3^{99}}\)
=> 4B < 3
=> B < \(\frac{3}{4}\) (2)
Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)
a, \(\frac{x-3}{y-2}=\frac{3}{2}\)và \(x-y=4\)
Theo bài ra ta có :
\(\frac{x-3}{y-2}=\frac{3}{2}\Leftrightarrow2x-6=3y-6\Leftrightarrow2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)
Áps dụng tính chất dãy tỉ số bằng nhau ta đc :
\(\frac{x}{3}=\frac{y}{2}=\frac{x-y}{3-2}=\frac{4}{1}=4\)
\(\frac{x}{3}=4\Leftrightarrow x=12\)
\(\frac{y}{2}=4\Leftrightarrow y=8\)
Tương tự với b thôi bn.
a)\(y+30\%y=-1,3\Rightarrow y+\frac{3}{10}y=-1,3\Rightarrow y\left(1+\frac{3}{10}\right)=-1,3\Rightarrow y\times1,3\)\(=-1,3\Rightarrow y=-1\)
b)\(y-25\%y=\frac{1}{2}\Rightarrow y-\frac{1}{4}y=\frac{1}{2}\Rightarrow y\left(1-\frac{1}{4}\right)=\frac{1}{2}\Rightarrow y\times\frac{3}{4}=\frac{1}{2}\Rightarrow y=\frac{1}{2}:\frac{3}{4}\Rightarrow y=\frac{2}{3}\)
c)\(3\frac{1}{3}y+16\frac{3}{4}=13,25\Rightarrow\frac{10}{3}y+\frac{67}{4}=\frac{53}{4}\Rightarrow\frac{10}{3}y=\frac{53}{4}-\frac{67}{4}\Rightarrow\frac{10}{3}y=\frac{-7}{2}\Rightarrow y=\frac{-21}{20}\)