Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên có 3 chữ số cần tìm là a ( a thuộc N sao)
theo bài ra ta có : a=8k+7
a=31q+28 (k,q thuộc N )
suy ra a-7=8k suy ra a-7 chi hết cho 8 suy ra a-7+72 chia hết cho 8 suy ra a+65 chia hết cho8
a-28=31k a-28 chia hết cho 31 a-28+93 chia hết cho 31 a+65 chia hết cho 31
suy ra a+65 thuộc BC(8;31)
để a có 3 chư số thì a+65 là BCNN ( 31,8)=248
vậy STN cố 3 chữ số cần tỉm là 248
Gọi là số nhỏ nhất thỏa a chia 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4
Thế thì a + 2 chia hết cho 3, 4, 5 và 6
=> a + 2 là BC (3, 4, 5, 6)
BCNN (3, 4, 5, 6) = 60
=> a + 2 là B(60) = { 60, 120, 180, 240, 300, 360, 420, 480, 540, 600, ...}
Trong các số trên chỉ có số 600 là thỏa
vì a + 2 = 600
=> a = 600 - 2 = 598 chia hết cho 13.
Vậy a = 598
Gọi số đã cho là A.
Ta có: A = 4a + 3
= 17b + 9 ﴾a,b,c thuộc N﴿
= 19c + 3
Mặt khác: A + 25 = 4a + 3 + 25 = 4a + 28 = 4﴾a + 7﴿
=17b + 9 + 25 = 17b+34 =17﴾b + 2﴿
=19c+13 + 25 = 19c + 38 = 19﴾c+2﴿
Như vậy A+25 đồng thời chia hết cho 4,17,19.
Mà ﴾4;17;19﴿ = 1 => A + 25 chia hết cho 1292.
=>A + 25=1292k﴾k=1,2,3,....﴿=>A = 1292k ‐ 25 = 1292k‐1292 + 1267 = 1292﴾k‐1﴿+1267.
Do 1267<1292 nên 1267 là số dư trong phép chia số đã cho A cho 1292.
Gọi số đã cho là A.Ta có:
A = 4a + 3
= 17b + 9 (a,b,c thuộc N)
= 19c + 3
Mặt khác: A + 25 = 4a+3+25=4a+28=4(a+7)
=17b+9+25=17b+34=17(b+2)
=19c+13+25=19c+38=19(c+2)
Như vậy A+25 đồng thời chia hết cho 4,17,19.Mà (4;17;19)=1=>A+25 chia hết cho 1292.
=>A+25=1292k(k=1,2,3,....)=>A=1292k-25=1292k-1292+1267=1292(k-1)+1267.
Do 1267<1292 nên 1267 là số dư trong phép chia số đã cho A cho 1292.
a)gọi số cần tìm là x
=> x - 1 chia het cho 3=> x-1+3 chia het cho 3 => x+2 chia het cho 3
x-2 chia het cho 4 => x-2+4 chia het cho 4 => x+2 chia het cho 4
x-3 chia het cho 5 => x-3+5 chia het cho 5 => x+2 chia het cho 5
x-4 chia het cho 6 => x-4+6 chia het cho 6 => x+2 chia het cho 6
=> x+2la BCNN(3;4;5;6)
ta co 3=3;4=22;5=5;6=2.3
=>BCNN(3;4;5;6)=22.3.5=60
=>x+2=60=>x=58
mình chỉ nhớ mỗi kết quả thôi chứ quên cách giải rồi, kết quả là 102
Gọi a là số cần tìm. Ta có: a + 3 chia hết cho 5 và 7. Suy ra:
\(a\in BC\left(5,7\right)=\left\{0;35;70;105;140;...\right\}\)
Vậy a = 105.
vì (a-7)/3 sẽ hết
(a-7)chia hết cho 4
(a-7)/5 sẽ chia hết
nên a-7 rồi chia cho 16 sẽ hết nên a không trừ thì chia 16 sẽ dư 7
là số 14
số 14 bạn ạ