Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt abcd=x^2
abcd+72=y^2 (x,y thuộc N,y>x)
ta có pt: y^2-x^2=72
<=>(y-x)(y+x)=72=1*72=2*36=3*24=4*18=6... (do y+x>=y-x)
giải các hệ trên tìm x===>abcd=x^2
đặt abcd=x^2
abcd+72=y^2 (x,y thuộc N,y>x)
ta có pt: y^2-x^2=72
<=>(y-x)(y+x)=72=1*72=2*36=3*24=4*18=6... (do y+x>=y-x)
giải các hệ trên tìm x===>abcd=x^2
(abcd) là kí hiệu số có 4 chữ số abcd.
từ: (ab)-(cd)=1 => (ab) =1+(cd)
giả sử n^2 = (abcd) = 100(ab) + (cd) = 100( 1+(cd)) + (cd) = 101(cd) +100
đk : 31<n<100
=> 101(cd) = n^2 -100 = (n+10)(n-10)
vì n< 100 => n-10 < 90 và 101 là số nguyên tố nên: n+10 = 101 => n =91
thử lại: số chính phương 91^2 = 8281 thỏa đk 82-81=1
(abcd) là kí hiệu số có 4 chữ số abcd.
từ: (ab)-(cd)=1 => (ab) =1+(cd)
giả sử n^2 = (abcd) = 100(ab) + (cd) = 100( 1+(cd)) + (cd) = 101(cd) +100
đk : 31 101(cd) = n^2 -100
= (n+10)(n-10) vì n< 100 => n-10 < 90 và 101 là số nguyên tố nên:
n+10 = 101 => n =91
thử lại: số chính phương 91^2 = 8281
thỏa đk 82-81=1
1,Tìm các số tự nhiên chia cho 4 dư 1 , còn chia cho 25 thì dư 3.2, Tìm số tự nhiên có 5 chữ số biết rằng số đó bằng 45 lần tổng các chữ số của nó.3,Tìm chữ số abcd ( có gạch trên đầu ) biết rằng số đó chia hết cho tích của ab và cd (có gạch trên đầu ).4, Tìm chữ số * biết : *63* (có gạch trên đầu ) chia hết cho 2,3,5,9.5,Tìm tất cả các số có 5 chữ số có dạng 34x5y ( có gạch trên... Đọc tiếp
1,Tìm các số tự nhiên chia cho 4 dư 1 , còn chia cho 25 thì dư 3.
2, Tìm số tự nhiên có 5 chữ số biết rằng số đó bằng 45 lần tổng các chữ số của nó.
3,Tìm chữ số abcd ( có gạch trên đầu ) biết rằng số đó chia hết cho tích của ab và cd (có gạch trên đầu ).
4, Tìm chữ số * biết : *63* (có gạch trên đầu ) chia hết cho 2,3,5,9.
5,Tìm tất cả các số có 5 chữ số có dạng 34x5y ( có gạch trên đầu ) mà chia hết cho 36.
34x5y chia hết cho 36 khi 34x5y chia hết cho 4 và 9
*) 34x5y chia hết cho 4 khi 5y chia hết cho 4
khi đó y = 2 hoặc y = 6.
*) 34x5y chia hết cho 9 khi 3+4+x+5+y = 12+x+y chia hết cho 9
Với y=2 ta có 12+x+2=14+x chia hết cho 9 khi x = 4
ta có số 34452 chia hết cho 36.
Với y=6 ta có 12+x+6=18+x chia hết cho 9 khi x = 9
ta có số 34956 chia hết cho 36.
Kết luận: có hai số chia hết cho 36 là 34452 và 34956
1. abcd0 - abcd = 3462
Ta đặt tính: abcd0
- abcd
3462
* 0 - d = 2 => d = 8 => 0 không trừ được 8, ta lấy 10 trừ 8 bằng 2 viết 2 nhớ 1
* d - (c + 1) = 6 => 8 - (c + 1) = 6 => c + 1 = 8 - 6 => c +1 = 2 => c = 1 => 1 thêm 1 là 2, 8 trừ 2 bằng 6 viết 6
* c - b = 4 => 1 - b = 4 => b = 7 => 1 không trừ được 7, ta lấy 11 trừ 7 bằng = 4 viết 4 nhớ 1
* b - (a + 1) = 3 => 7 - (a + 1) = 3 => a + 1 = 7 - 3 => a + 1 = 4 => a = 3 => 3 thêm 1 là 4, 7 trừ 4 bằng 3 viết 3
Như vậy ta có phép tính: 37180 - 3718 = 3462
2. Đề bài 2 của bạn bị sai rồi vì một số tự nhiên có 2 chữ số thì không thể có 2 số ở giữa được
(abc) + (acc) + (dbc) = (bcc) (a, b, d > 0) => (abc) + (dbc) = (bcc) - (acc) = (b - a)*100
=> (a + d)*100 + 2*(bc) = (b - a)*100 => 2*(bc) = (b - 2a - d)*100 chia hết cho 100
=> (bc) = 50 => 5 - 2a - d = 1 => d = 2(2 - a) > 0 => a = 1 => d = 2
Vậy (abcd) = 1502
Mình không kịp để giải nên mình chỉ bạn cách làm nhà bạn lên gogle bàn trà là có đó chúc thành công !
nếu k mik thì càng tốt chúc bạn học giỏi
không có số nào thỏa mãn
Vì c là số có 1 cs =>5c +1 là số có 2 cs nên khác abcd