Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4}{3.6}+\frac{4}{6.9}+\frac{4}{9.12}+\frac{4}{12.15}\)
\(=\frac{4}{3}.\left(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+\frac{3}{12.15}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\left(\frac{5}{15}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\frac{4}{15}=\frac{16}{45}\)
Dấu . là nhân nha
\(\frac{4}{3.6}+\frac{4}{6.9}+\frac{4}{9.12}+\frac{4}{12.15}\)
\(=\frac{4}{3}.\left(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+\frac{3}{12.15}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\frac{4}{15}=\frac{16}{45}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
\(3A=\frac{6}{3\times\left(3+6\right)}+\frac{15}{9\times\left(9+15\right)}+...+\frac{39}{84\times\left(84+39\right)}\)
\(=\frac{1}{3}-\frac{1}{9}+\frac{1}{9}-\frac{1}{24}+...+\frac{1}{84}-\frac{1}{123}=\frac{1}{3}-\frac{1}{123}=\frac{40}{123}\)
\(\Rightarrow A=\frac{40}{3.123}=\frac{40}{369}\)
A) \(\frac{1}{6}\) = 0,1666666665
B) 0,1666669167
\(\frac{1}{6}\) < \(\frac{111111}{666665}\)
Bạn lấy tử chia cho mẫu là ra
A = \(\dfrac{1}{3\times6}\) + \(\dfrac{1}{6\times9}\) + \(\dfrac{1}{9\times12}\)+...+\(\dfrac{1}{144\times147}\)
A = \(\dfrac{1}{3}\) \(\times\)( \(\dfrac{3}{3\times6}\) + \(\dfrac{3}{6\times9}\)+\(\dfrac{1}{9\times12}\)+...+\(\dfrac{3}{144\times147}\))
A = \(\dfrac{1}{3}\) \(\times\)(\(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{12}+...+\dfrac{1}{144}-\dfrac{1}{147}\))
A = \(\dfrac{1}{3}\)\(\times\)(\(\dfrac{1}{3}\) - \(\dfrac{1}{147}\))
A = \(\dfrac{1}{3}\) \(\times\)\(\dfrac{16}{49}\)
A = \(\dfrac{16}{147}\)
`@` `\text {Ans}`
`\downarrow`
\(\text{ A = }\dfrac{1}{4\times8}+\dfrac{1}{8\times12}+\dfrac{1}{12\times16}+...+\dfrac{1}{172\times176}\)
\(\text{A = }\dfrac{1}{4}\times\left(\dfrac{4}{4\times8}+\dfrac{4}{12\times16}+...+\dfrac{4}{172\times176}\right)\)
\(\text{A = }\dfrac{1}{4}\times\left(\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{12}-\dfrac{1}{16}+...+\dfrac{1}{172}-\dfrac{1}{176}\right)\)
\(\text{A = }\dfrac{1}{4}\times\left(\dfrac{1}{4}-\dfrac{1}{176}\right)\)
\(\text{A = }\dfrac{1}{4}\times\dfrac{43}{176}\)
\(\text{A = }\dfrac{43}{704}\)
Đáp số: `\text {A =} 43/704.`
A = 1/4 x 8 + 1/8 x 12 + 1/12 x 16 + ... + 1/176 x 180
=> 4A = 4/4 x 8 + 4/8 x 12 + 4/12 x 16 + ... + 4/176 x 180
=> 4A = 1/4 - 1/8 + 1/8 - 1/12 + 1/12 - 1/16 + ... 1/176 - 1/180
=> 4A = 1/4 - 1/180
=> 4A = 45/180 - 1/180
=> 4A = 44/180
=> 4A = 11/45
=> A = 11/45 : 4
=> A = 11/180
Vậy A = 11/180
A = \(\dfrac{1}{4\times8}\) + \(\dfrac{1}{8\times12}\) + \(\dfrac{1}{12\times16}\) +...+ \(\dfrac{1}{176\times180}\)
A = \(\dfrac{1}{4}\) \(\times\)( \(\dfrac{4}{4\times8}\)+ \(\dfrac{4}{12\times16}\)+...+ \(\dfrac{4}{176\times180}\))
A = \(\dfrac{1}{4}\) \(\times\)( \(\dfrac{1}{4}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{12}\) - \(\dfrac{1}{16}\) +...+ \(\dfrac{1}{176}\) - \(\dfrac{1}{180}\))
A = \(\dfrac{1}{4}\) \(\times\)(\(\dfrac{1}{4}\) - \(\dfrac{1}{180}\))
A = \(\dfrac{1}{4}\) \(\times\)\(\dfrac{11}{45}\)
A = \(\dfrac{11}{180}\)
\(\frac{63x18}{9}=63x2=126\)
\(\frac{56x24}{12}=56x2=112\)
\(\frac{56x24}{28}=2x24=48\)
\(\frac{56x24}{3x8}=\frac{56x24}{24}=56\)
\(\frac{8x15x9}{5x3x2}=\frac{2x4x5x3x3x3}{5x3x2}=4x3x3=36\)
=7x18=126
=56x2=112
=7x8=56
=4x9=36