Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 nhìn tổng quát thì tahays tiwur A đến K đều dung hđt số 3
còn L thì đặt dyas âm trước 3 hạng tử đầu dung hđt 1 rồi áp dụng hđt 3
m tương tự đặt dấu âm làm nhân tử chung 3 hạng tử sau rồi áp dụng hđt số 2 sung hđt số 3
.hết
a: \(\left(\dfrac{x+2}{x+1}-\dfrac{2x}{x-1}\right)\cdot\dfrac{3x+3}{x}+\dfrac{4x^2+x+7}{x^2-x}\)
\(=\dfrac{x^2+x-2-2x^2-2x}{\left(x+1\right)\left(x-1\right)}\cdot\dfrac{3\left(x+1\right)}{x}+\dfrac{4x^2+x+7}{x\left(x-1\right)}\)
\(=\dfrac{-x^2-x-2}{x-1}\cdot\dfrac{3}{x}+\dfrac{4x^2+x+7}{x\left(x-1\right)}\)
\(=\dfrac{-3x^2-3x-6+4x^2+x+7}{x\left(x-1\right)}=\dfrac{x^2-2x+1}{x\left(x-1\right)}=\dfrac{x-1}{x}\)
Bài 5:
a) \(x^2+4x-5=x^2-x+5x-5=x\left(x-1\right)+5\left(x-1\right)=\left(x+5\right)\left(x-1\right)\)
b) \(2x^2-14x+20=2x^2-4x-10x+20=2x\left(x-2\right)-10x\left(x-2\right)=2\left(x-5\right)\left(x-2\right)\)
c) \(3x^2+8x+5=3x^2+3x+5x+5=3x\left(x+1\right)+5\left(x+1\right)=\left(3x+5\right)\left(x+1\right)\)
d) \(6x^2-xy-7y^2=6x^2+6xy-7xy-7y^2=6x\left(x+y\right)-7y\left(x+y\right)\)
\(=\left(6x-7y\right)\left(x+y\right)\)
Bài 4:
a) \(x^3-6x^2+12x-8=x^3-2.3.x^2+3.2^2.x-2^3=\left(x-2\right)^3\)
b) \(\left(x-1\right)^3+\left(3-x\right)^3=\left(x-1+3-x\right)\left[\left(x-1\right)^2-\left(x-1\right)\left(3-x\right)+\left(3-x\right)^2\right]\)
\(=2\left(x^2-2x+1+x^2-4x+3+x^2-6x+9\right)\)
\(=2\left(3x^2-12x+13\right)\)
c) \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xy-3yz-3zx\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
86.NHỮNG PHÉP TÍNH THÚ VỊ
24+36=1
11+13=1
158+207=1
46+54=1
thì khi đó người làm câu hỏi bị sai/ mình nghĩ thế
4/Giả xử \(\dfrac{a}{b}+\dfrac{b}{a}>=2\) (1)
<=> \(\dfrac{a^2+b^2}{ab}\)>=2
<=>a2+b2 >= 2ab
<=> a2+b2 - 2ab >=0
<=> (a-b)2 >= 0 (2)
Vì bđt (2) đúng nên bđt (1) đúng
b/ Gỉa sử \(\left(\dfrac{a+b}{2}\right)^2>=ab\)(1)
<=> \(\dfrac{\left(a+b\right)^2}{4}\)>= ab
<=> a2+b2+2ab>= 4ab
<=> a2+b2+2ab -4ab >=0
<=> (a-b)2>=0 (2)
Vidbđt (2) đúng nên bddt (1) đúng
c/Gỉa sử (ax+by)2<= (a2+b2)(x2+y2) (1)
<=> (ax)2+ (by)2+2*ax*by<= (ax)2 +(ay)2+(bx)2+(by)2
<=> 2*ax*by <= (ay)2+(bx)2
<=> 0<= (ay+bx)2(2)
(2) đúng nên(1) đúng
tui giúp đc nhiu đây thôi