Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\frac{2}{1.3}-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-\frac{2}{9.11}-\frac{2}{11.13}-\frac{2}{13.15}\)
\(=\left(-\frac{2}{1.3}\right)+\left(-\frac{2}{3.5}\right)+\left(-\frac{2}{5.7}\right)+\left(-\frac{2}{7.9}\right)+\left(-\frac{2}{9.11}\right)+\left(-\frac{2}{11.13}\right)+\left(-\frac{2}{13.15}\right)\)
\(=\left(-2\right).\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\right)\)
\(=\left(-2\right).\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\left(-2\right).\left(1-\frac{1}{15}\right)=\left(-2\right).\frac{14}{15}\)
\(=-\frac{28}{15}\)
Đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\)
\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\)
\(2A=\frac{100}{101}\)
\(A=\frac{50}{101}\)
b) \(\frac{2^{10}+3^{31}+2^{40}+3^6}{2^{11}\cdot3^{31}+2^{41}\cdot3^6}=\frac{2^{10}+2^{40}}{2^{11}+2^{41}}\)
\(\frac{2^{10}+2^{40}}{2^{11}+2^{41}}=\frac{1}{2}\)
=1/2x(1/1.3+1/3.5+...+1/99.101)
=1/2.(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)
=1/2.(1-1/101)
=1/2.100/101
=50/101
chúc bạn học tốt
Ta có:\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)=\frac{1}{2}\left(1-\frac{1}{21}\right)=\frac{1}{2}.\frac{20}{21}=\frac{10}{21}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}\)\(+...+\frac{1}{19.21}\)
=\(\frac{2}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}\right)\)
=\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{19.21}\right)\)
=\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{19}-\frac{1}{21}\right)\)
=\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{21}\right)\)
=\(\frac{1}{2}.\frac{20}{21}\)
=\(\frac{20}{42}=\frac{10}{21}\)
a)Ta có:
\(A=4\frac{25}{16}+25\left(\frac{9}{16}:\frac{125}{64}\right):\frac{-27}{8}\)
\(\Rightarrow A=\frac{89}{16}+25.\frac{36}{125}:\frac{-27}{8}\)
\(\Rightarrow A=\frac{89}{16}+\frac{36}{5}:\frac{-27}{8}\)
\(\Rightarrow A=\frac{89}{16}+\frac{-32}{15}\)
\(\Rightarrow A=\frac{823}{240}\)
Vậy A=.....
b)Ta có:
\(C=\frac{2^3}{3.5}+\frac{2^3}{5.7}+\frac{2^3}{7.9}+...+\frac{2^3}{101.103}\)
\(\Rightarrow C=\frac{2^2.2}{3.5}+\frac{2^2.2}{5.7}+\frac{2^2.2}{7.9}+...+\frac{2^2.2}{101.103}\)
\(\Rightarrow C=2^2\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{101.103}\right)\)
\(\Rightarrow C=4\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{101}-\frac{1}{103}\right)\)
\(\Rightarrow C=4\left(\frac{1}{3}-\frac{1}{103}\right)\)
\(\Rightarrow C=4.\frac{100}{309}\)
\(\Rightarrow C=\frac{400}{309}\)
Vậy C=.....
2/1.3 + 2/3.5 + 2/5.7 +...+ 2/97.99
=(1/1-1/3)+(1/3-1/5)+(1/5-1/7)+...+(1/97-1/99)
=1-1/99=98/99
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{153.155}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{153}-\frac{1}{155}\)
\(=1-\frac{1}{155}\)
\(=\frac{154}{155}\)
~Study well~
#JDW
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.......+\frac{2}{153.155}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{153}-\frac{1}{155}\)
\(=1-\frac{1}{155}\)
\(=\frac{154}{155}\)
2/1.3 + 2/3.5 + ... + 2/87.89
= 1/1 - 1/3 + 1/3 - 1/5 + ... + 1/87 - 1/89
= 1/1 - 1/89
=88/89
Tick đúng cho mình nha
A=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)
=\(\frac{2}{1}-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{49}-\frac{2}{51}\)
= \(2.(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51})\)
=2.\((1-\frac{1}{51})\)
=\(2.\frac{50}{51}\)
=\(\frac{100}{51}\)
Lời giải:
a. $0,5.\frac{1}{2}+\frac{3}{4}=\frac{1}{4}+\frac{3}{4}=1$
b.
$\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{27.29}$
$=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{29-27}{27.29}$
$=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{27}-\frac{1}{29}$
$=1-\frac{1}{29}=\frac{28}{29}$