Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[\frac{12}{11}-\left(\frac{1}{2}+\frac{1}{44}\right)\right].\left(x-0,2\right)=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\frac{25}{44}.\left(x-0,2\right)=\frac{1}{2}.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{9.11}\right)\)
\(x-0,2=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right):\frac{25}{44}\)
\(x-\frac{1}{5}=\frac{22}{25}.\left(1-\frac{1}{11}\right)=\frac{22}{25}.\frac{10}{11}=\frac{4}{5}\)
\(x=\frac{4}{5}+\frac{1}{5}\)
\(x=1\)
Đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\)
\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\)
\(2A=\frac{100}{101}\)
\(A=\frac{50}{101}\)
b) \(\frac{2^{10}+3^{31}+2^{40}+3^6}{2^{11}\cdot3^{31}+2^{41}\cdot3^6}=\frac{2^{10}+2^{40}}{2^{11}+2^{41}}\)
\(\frac{2^{10}+2^{40}}{2^{11}+2^{41}}=\frac{1}{2}\)
=1/2x(1/1.3+1/3.5+...+1/99.101)
=1/2.(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)
=1/2.(1-1/101)
=1/2.100/101
=50/101
chúc bạn học tốt
1) \(=\frac{7}{4}.\left[\frac{2}{3}-\left(\frac{1}{2}-\frac{3}{8}\right)\right]=\frac{7}{4}.\left(\frac{2}{3}-\frac{1}{8}\right)=\frac{7}{4}.\frac{13}{24}=\frac{91}{96}\)
2) \(=\frac{3}{4}-\left[-\left(-\frac{5}{3}\right)-\left(\frac{1}{12}+\frac{2}{9}\right)\right]=\frac{3}{4}-\frac{5}{3}-\frac{-5}{36}=\frac{-11}{12}+\frac{5}{36}=\frac{-28}{36}\)
3) \(=-\frac{6}{11}+\frac{12}{-7}+\frac{-34}{77}=-\frac{42}{77}+\frac{-132}{77}+\frac{-34}{77}=\frac{-208}{77}\)
4) \(=\frac{1}{11}+\frac{2}{3}+\frac{-19}{33}=\frac{3}{33}+\frac{22}{33}+\frac{-19}{33}=\frac{6}{33}=\frac{3}{11}\)
Câu 2) Đinh Tuân việt nhầm:
Quy đồng \(\frac{1}{12}+\frac{2}{9}=\frac{3}{36}+\frac{8}{36}=\frac{11}{36}\)
=> Người chọn đáp án nên thấy hiểu và hợp lý mới chọn
1)
2/3.5+2/5.7+...+2/11.13+2/13.15+2/1.2+2/2.3+...+2/9.10
=(2/3.5+...2/13.15)+(2/1.2+...+2/9.10)
= (2/3-2/15)+ [2(1-1/10)]
=8/15+9/5
=7/3
2)
11/12+11/12.24+...+11/88.99
=11-1/9
=10/8/9
a: Ta có: \(\dfrac{8}{9}-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{72}\right)\)
\(=\dfrac{8}{9}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{3}-...+\dfrac{1}{8}-\dfrac{1}{9}\right)\)
=0
A=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)
=\(\frac{2}{1}-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{49}-\frac{2}{51}\)
= \(2.(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51})\)
=2.\((1-\frac{1}{51})\)
=\(2.\frac{50}{51}\)
=\(\frac{100}{51}\)