Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{2}\right|+\left|\sqrt{5}+\sqrt{2}\right|\)
\(=\sqrt{5}-\sqrt{2}+\sqrt{5}+\sqrt{2}\)
\(=\sqrt{5}+\sqrt{5}\)
\(=2\sqrt{5}\)
b) \(\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(\sqrt{2}-5\right)^2}\)
\(=\left|\sqrt{2}-1\right|-\left|\sqrt{2}-5\right|\)
\(=\sqrt{2}-1-\left(5-\sqrt{2}\right)\)
\(=\sqrt{2}-1-5+\sqrt{2}\)
\(=2\sqrt{2}-6\)
\(\dfrac{4}{\sqrt{5}-\sqrt{2}}+\dfrac{3}{\sqrt{5}-2}-\dfrac{2}{\sqrt{3}-2}-\dfrac{\sqrt{3}-1}{6}\)
\(=\dfrac{4\left(\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{2}+\sqrt{5}\right)}+\dfrac{3\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}-\dfrac{2\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\dfrac{\sqrt{3}-1}{6}\)
\(=\dfrac{4\left(\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{5}\right)^2-\left(\sqrt{2}\right)^2}+\dfrac{3\left(\sqrt{5}+2\right)}{\left(\sqrt{5}\right)^2-2^2}-\dfrac{2\left(\sqrt{3}+2\right)}{\left(\sqrt{3}\right)^2-2^2}-\dfrac{\sqrt{3}-1}{6}\)
\(=\dfrac{4\left(\sqrt{2}+\sqrt{5}\right)}{3}+\dfrac{3\left(\sqrt{5}+2\right)}{1}-\dfrac{2\left(\sqrt{3}+2\right)}{-1}-\dfrac{\sqrt{3}-1}{6}\)
\(=\dfrac{8\left(\sqrt{2}+\sqrt{5}\right)}{6}+\dfrac{18\left(\sqrt{5}+2\right)}{6}+\dfrac{12\left(\sqrt{3}+2\right)}{6}-\dfrac{\sqrt{3}-1}{6}\)
\(=\dfrac{8\sqrt{2}+8\sqrt{5}+18\sqrt{5}+36+12\sqrt{3}+24-\sqrt{3}+1}{6}\)
\(=\dfrac{8\sqrt{2}+26\sqrt{5}+11\sqrt{3}+61}{6}\)
\(=\dfrac{4\left(\sqrt{5}+\sqrt{2}\right)}{3}+\dfrac{3\left(\sqrt{5}+2\right)}{1}+\dfrac{2\left(2+\sqrt{3}\right)}{1}-\dfrac{\sqrt{3}-1}{6}\)
\(=\dfrac{4\sqrt{5}+4\sqrt{2}+9\sqrt{5}+18}{3}+\dfrac{4+2\sqrt{3}}{1}-\dfrac{\sqrt{3}-1}{6}\)
\(=\dfrac{2\left(13\sqrt{5}+4\sqrt{2}+18\right)+24+12\sqrt{3}-\sqrt{3}+1}{6}\)
\(=\dfrac{26\sqrt{5}+4\sqrt{2}+36+25+11\sqrt{3}}{6}\)
\(=\dfrac{61+11\sqrt{3}+26\sqrt{5}+4\sqrt{2}}{6}\)
a: Ta có: \(3\sqrt{2}\cdot5\sqrt{6}\cdot4\sqrt{12}\)
\(=\sqrt{18\cdot25\cdot6\cdot16\cdot12}\)
\(=\sqrt{518400}\)
=720
b: Ta có: \(\left(\sqrt{7}-\sqrt{2}\right)^2+2\sqrt{14}\)
\(=9-2\sqrt{14}+2\sqrt{14}\)
=9
c: Ta có: \(\left(1+\sqrt{5}+\sqrt{6}\right)\left(1+\sqrt{5}-\sqrt{6}\right)\)
\(=6+2\sqrt{5}-6\)
\(=2\sqrt{5}\)
\(\sqrt{36}+\sqrt{9}-\sqrt{49}\)
\(=6+3-7\)
\(=2\)
\(\sqrt{2}\cdot\left(\sqrt{50}-3\sqrt{2}\right)\)
\(=\sqrt{2}\cdot\left(5\sqrt{2}-3\sqrt{2}\right)\)
\(=\sqrt{2}\cdot2\sqrt{2}\)
\(=4\)
a, (\(\sqrt{128}\)-\(\sqrt{50}\)+\(\sqrt{98}\)):\(\sqrt{2}\)
=(8-5+3)
=10
b, (\(\sqrt{48}\)+\(\sqrt{27}\)-\(\sqrt{192}\)):2\(\sqrt{3}\)
=(2+1,5-4)
=-0,5
c, \(\dfrac{1}{8}\)-3\(\sqrt{2}\) +\(\dfrac{1}{8}\)+3\(\sqrt{2}\)
=\(\dfrac{1}{4}\)
d, \(\sqrt{\left(1-\sqrt{5}\right)^2}-\sqrt{5}\)
=-1
\(A=2\sqrt{2}+\sqrt{3}\)
\(B=\dfrac{2\sqrt{2}}{1+\sqrt{2-\sqrt{3}}}=\dfrac{4}{2+\sqrt{3}-1}=\dfrac{4}{\sqrt{3}+1}=2\sqrt{3}-2\)
=>A>B
a) \(\left(2\sqrt{2}-3\right)^2\)
\(=\left(2\sqrt{2}\right)^2-2\cdot2\sqrt{2}\cdot3+3^2\)
\(=4\cdot2-12\sqrt{2}+9\)
\(=17-12\sqrt{2}\)
b) \(\sqrt{\left(\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}\right)^2}\)
\(=\left|\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}\right|\)
\(=\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}\)
\(=\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\)
\(=\dfrac{\sqrt{2}-1}{2}\)
c) \(\sqrt{\left(0,1-\sqrt{0,1}\right)^2}\)
\(=\left|0,1-\sqrt{0,1}\right|\)
\(=0,1-\sqrt{0,1}\)