Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giải
Đặt \(d=\left(16n+5,6n+2\right)\)
\(\Rightarrow\hept{\begin{cases}\left(16n+5\right)⋮d\\\left(6n+2\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left[3\left(16n+5\right)\right]⋮d\\\left[8\left(6n+2\right)\right]⋮d\end{cases}}\)
\(\Rightarrow\left[8\left(6n+2\right)-3\left(16n+5\right)\right]⋮d\)
\(\Rightarrow\left[48n+16-48n-15\right]⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
Vậy phân số \(\frac{16n+5}{6n+2}\) tối giản với mọi n.
b) Giải
Đặt \(d=\left(14n+3,21n+4\right)\)
\(\Rightarrow\hept{\begin{cases}\left(14n+3\right)⋮d\\\left(21n+4\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left[3\left(14n+3\right)\right]⋮d\\\left[2\left(21n+4\right)\right]⋮d\end{cases}}\)
\(\Rightarrow\left[3\left(14n+3\right)-2\left(21n+4\right)\right]⋮d\)
\(\Rightarrow\left[42n-9-42n-8\right]⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
Vậy phân số \(\frac{14n+3}{21n+4}\) tối giản với mọi n.
Bài 2: Mỗi xe ô tô có 4 bánh xe . Hỏi 5 xe ô tô như thế có bao nhiêu bánh xe ?
Bài giải
5 xe ô tô như thế có số bánh xe là :
4 x 5= 20 (bánh xe )
Đáp số : 20 bánh xe
\(\frac{15}{41}+\frac{-138}{41}< x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\Leftrightarrow\frac{-123}{41}< x< \frac{1.3+1.2+1}{6}\)
\(\Leftrightarrow-3< x< 1\)
\(\Rightarrow x\in\left\{-2;-1;0\right\}\)
\(\frac{x}{5}=\frac{15}{2}-\frac{51}{10}\)
\(\frac{x}{5}=\frac{15.5-51}{10}\)
\(\frac{x}{5}=\frac{24}{10}\)
\(\frac{x}{5}=\frac{12}{5}\)
\(x=12\)
a) \(\frac{53}{101}.\frac{-13}{97}+\frac{53}{101}.\frac{-84}{97}\)
\(=\frac{53}{101}\left(\frac{-13}{97}+\frac{-84}{97}\right)\)
\(=\frac{53}{101}.\frac{-97}{97}\)
\(=\frac{53}{101}.\left(-1\right)\)
\(=\frac{-53}{101}\)
b) \(\left(\frac{1}{57}-\frac{1}{5757}\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
\(=\left(\frac{1}{57}-\frac{1}{5757}\right)\left(\frac{3}{6}-\frac{2}{6}-\frac{1}{6}\right)\)
\(=\left(\frac{1}{57}-\frac{1}{5757}\right).0\)
\(=0\)
c) \(\frac{3^2}{25}.\frac{75}{-21}.\frac{50}{35}\)
\(=\frac{3^2.75.50}{25.\left(-21\right).35}\)
\(=\frac{3.3.25.3.5.5.2}{25.3.\left(-7\right).5.7}\)
\(=\frac{3.3.5.2}{\left(-7\right).7}\)
\(=\frac{90}{-49}\)
d) \(\frac{25.48-25.18}{20.5^3}\)
\(=\frac{25\left(48-18\right)}{10.2.125}\)
\(=\frac{25.10.3}{10.2.25.5}\)
\(=\frac{3}{10}\)
Câu 1: Phép cộng 3 chữ số
145+729+134+879+231+473+539+861+290+425+139+391+912+768+824+276+423+761+574+758=10532
Câu 2: Phép cộng trừ 3 chữ số
124+516+782+947-374+460+712+175+948-764+256+792+386+935-142+908+397+419+803+751=9031
Câu 3: Phép cộng 5 chữ số
85621+96812+37485+80293+91045+80497+93605+10392+78426+37254+65793+17834+45261+82630+65714+96715+37689+86354
+28017+74308=1291745
Câu 4: Phép cộng 3 chữ số
185+462+157+263+631+417+598+895+452+265+374+418+129+912+173+892+625+708+120+506=9182
tiêu 2.000; 20.000; 50.000 còn lại: 1.000; 5.000; 10.000; 100.000, 200.000;500 000
\(A=\frac{23n+1}{n-2}=\frac{23n-46+46+1}{n-2}=\frac{23\left(n-2\right)+47}{n-2}=23+\frac{47}{n-2}\)
A là số nguyên <=> \(\frac{47}{n-2}\) là số nguyên <=> \(47⋮n-2\) hay \(n-2\inƯ\left(47\right)=\left\{-47;-1;1;47\right\}\)
<=> \(n\in\left\{-45;1;3;49\right\}\)
Kết luận:...
\(A=\frac{23n+1}{n-2}=\frac{23\left(n-2\right)+47}{n-2}=23+\frac{47}{n-2}\)
A nguyên <=> \(\frac{47}{n-2}\)nguyên
=> \(47⋮n-2\)=> \(n-2\inƯ\left(47\right)=\left\{\pm1;\pm47\right\}\)
n-2 | 1 | -1 | 47 | -47 |
n | 3 | 1 | 49 | -45 |
\(A=\frac{12.7^2.4}{2^3.10.21}=\frac{2^3.21.14}{2^3.10.21}=\frac{14}{10}=\frac{7}{5}\)
\(B=\frac{1+2+3+...+9}{11+12+...+39}=\frac{\frac{9\left(9+1\right)}{2}}{\frac{\left(11+39\right).\left(39-11+1\right)}{2}}=\frac{45}{725}=\frac{9}{145}\)
\(C=\frac{17.48-17.15}{66.47-66.13}=\frac{17\left(48-15\right)}{66\left(47-13\right)}=\frac{17.33}{66.34}=\frac{1}{4}\)
Trả lời
=1/4
...............học tốt................