Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3x^2y^3-5x^2+3x^3y^2\)
bậc 5, hệ số 3
bạn xem lại đề B nhé
A=15x2y2+7x2-8x3y2-12x2+11x3y2-12x2y2
= (15x2y2-12x2y2)+(7x2-12x2)+(-8x3y2+11x3y2)
= 3x2y2-5x2+3x3y2
Bậc của đa thức A: 5
Hệ số cao nhất: 3
B= \(3x^5y+\dfrac{1}{3}xy^4+\dfrac{3}{4}x^2y^3-\dfrac{1}{2}x^5y+2xy^4-x^2y^3\)
=\(\left(3x^5y-\dfrac{1}{2}x^5y\right)+\left(\dfrac{1}{3}xy^4+2xy^4\right)+\left(\dfrac{3}{4}x^2y^3-x^2y^3\right)\)
= 2,5x5y+\(\dfrac{7}{3}\)xy4-\(\dfrac{1}{4}\)x2y3
Bậc của đa thức B: 6
Hệ số cao nhất : \(\dfrac{7}{3}\)
\(3x^2y^3-A-5x^3y^2+B=8x^2y^3-4x^3y^2\)
\(\Leftrightarrow-A+B=5x^2y^3+x^3y^2\)
\(-6x^2y^3+C-3x^3y^2-D=2x^2y^3-7x^3y^2\)
\(\Leftrightarrow C-D=8x^2y^3-4x^3y^2\)
Do \(A\) và \(C\) đồng dạng nên \(A=-5x^2y^3,C=8x^2y^3\) suy ra \(B=x^3y^2,D=4x^3y^2\) hoặc \(A=-x^3y^2,C=-4x^3y^2\) suy ra \(B=5x^2y^3,D=-8x^2y^3\).
Lời giải:
a) $P(x)= 5x+x^3y-2xy+4x^3y+3x^2y-10x$
$=(x^3y+4x^3y)+3x^2y-2xy+(5x-10x)$
$=5x^3y+3x^2y-2xy-5x$
$Q(x)=4x-5x^3y+2x^2y-x^3y+6xy+11x^3-8x$
$=-6x^3y+2x^2y+11x^3+6xy-4x$
$P(x)-Q(x)=11x^3y+x^2y-8xy-x-11x^3$
Bậc của $P(x)-Q(x)$ là $3+1=4$
b)
$P(x)+Q(x)=-x^3y+5x^2y+4xy-9x+11x^3$
$P(x)-Q(x)$ đã thu gọn ở phần a.
a: \(A=3x^2y^3-5x^2+3x^3y^2\)
\(B=x^2y^3+\dfrac{5}{2}x^5y-5x^2y\)
b: \(A+B=4x^2y^3+5x^2+\dfrac{5}{2}x^5y+3x^3y^2-5x^2y\)
\(A-B=2x^2y^3-5x^2+3x^3y^2-\dfrac{5}{2}x^5y+5x^2y\)
c: Khi x=-1 và y=-1/3 thì \(A=3\cdot\left(-1\right)^2\cdot\dfrac{-1}{27}-5\cdot\left(-1\right)^2+3\cdot\left(-1\right)^3\cdot\dfrac{1}{9}\)
\(=-\dfrac{1}{9}-5-\dfrac{1}{3}=\dfrac{-49}{9}\)