Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(a^2+b^2=\left(a+b\right)^2-2ab\)
\(VP=\left(a+b\right)^2-2ab=a^2+2ab+b^2-2ab\)\(=a^2+b^2=VT\)
\(\Rightarrowđpcm\)
b)\(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2\)
\(VP=a^4+b^4+2a^2b^2-2a^2b^2=a^4+b^4=VT\)\(\Rightarrowđpcm\)
c) \(a^6+b^6=\left(a^2+b^2\right)\left[\left(a^2+b^2\right)^2-3a^2b^2\right]\)
\(VP=\left(a^2+b^2\right)\left(a^4-a^2b^2+b^4\right)=a^6+b^6\)
\(VP=VT\Rightarrowđpcm\)
d)\(a^6-b^6=\left(a^2-b^2\right)[\left(a^2+b^2\right)^2-a^2b^2]\)
\(VP=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)=a^6-b^6=VT\)
\(VP=VT\Rightarrowđpcm\)
Lời giải:
Áp dụng BĐT Bunhiacopkxy:
\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)
\(=[a(a+b+c)]^2\)
\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:
\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
2. CM đẳng thức
a) \(a^2+b^2=\left(a+b\right)^2-2ab\)
Ta có: \(VP=\left(a+b\right)^2-2ab=a^2+2ab+b^2-2ab=a^2+b^2=VT\)
b) \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2\)
Ta có: \(VP=\left(a^2+b^2\right)^2-2a^2b^2=a^4+2a^2b^2+b^4-2a^2b^2=a^4+b^4=VT\)
\(1,VT=2\left(a^3+b^3+c^3\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Ta có \(a^3+b^3\ge ab\left(a+b\right)\)
\(b^3+c^3\ge bc\left(b+c\right)\)
\(c^3+a^3\ge ca\left(c+a\right)\)
Cộng từng vế các bđt trên ta được
\(VT\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Bây giờ ta cm:
\(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)
Bất đẳng thức trên luôn đúng
Vậy bđt được chứng minh
Dấu "=" xảy ra khi a=b=c
minh chua co hoc
(a - b - 2)2 - (2a - 2b)(a - b - 2) + a2 + b2 - 2ab
= (a - b - c)(a - b - c) - (2a - 2b)(a - b - 2) + a2 + b2 - 2ab
= -2ab + a2 - 4a + b2 + 4b + 4 + 4ab - 2a2 + 4a - 2b2 - 4b + a2 + b2 - 2ab
= 4