K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

\(-\frac{3}{5}xyz^2\cdot\frac{1}{3}xy\cdot\left(-\frac{1}{4}\right)x^5yz\)

\(=\left(-\frac{3}{5}\cdot\frac{1}{3}\cdot\frac{-1}{4}\right)\left(x\cdot x\cdot x^5\right)\left(y\cdot y\cdot y\right)\left(z^2\cdot z\right)\)

\(=\frac{1}{20}x^7y^3z^3\)

18 tháng 7 2018

\(3xyz^2+\left(-\frac{4}{8}\right)xyz^5\cdot\frac{1}{3}xyz\)

\(=3xyz^2-\frac{1}{2}xyz\cdot\frac{1}{3}xyz\)

\(=3xyz-\frac{1}{6}x^2y^2z^2\)

\(xyz\left(3-\frac{1}{6}xyz\right)\)

b) \(3xyz^5\cdot\left(-\frac{1}{7}\right)xyz\cdot\frac{-1}{8}xyz^4\)

\(=\left[3\cdot\left(-\frac{1}{7}\right)\cdot\left(-\frac{1}{8}\right)\right]\left(x\cdot x\cdot x\right)\left(y\cdot y\cdot y\right)\left(z^5\cdot z\cdot z^4\right)\)

\(=\frac{3}{56}x^3y^3z^{10}\)

18 tháng 7 2018

a, \(3xyz^2+\left(\frac{-4}{8}xyz^5\right)\cdot\frac{1}{3}xyz=3xyz^2+\left[\left(\frac{-4}{8}\right)\cdot\frac{1}{3}\right]xyz^5xyz\)\(=3xyz^2-\frac{1}{2}x^2y^2z^6\)

b, \(3xyz^5\cdot\left(\frac{-1}{7}xyz^2\right)\cdot\frac{-1}{8}xyz^4=\left[3\cdot\left(\frac{-1}{7}\right)\cdot\left(\frac{-1}{8}\right)\right]xyz^5xyz^2xyz^4=\frac{3}{56}x^3y^3z^{11}\)

Ta có: \(\frac{5}{3}x^2y^4-\frac{1}{7}x^3y^2-xy+\left(\frac{1}{7}x^3y^2-\frac{5}{3}x^2y^4+\frac{1}{3}xy\right)\)

\(=\frac{5}{3}x^2y^4-\frac{1}{7}x^3y^2-xy+\frac{1}{7}x^3y^2-\frac{5}{3}x^2y^4+\frac{1}{3}xy\)

\(=-xy+\frac{1}{3}xy\)

\(=xy\left(-1+\frac{1}{3}\right)=-\frac{2}{3}xy\)

Bậc của nó là 2

2 tháng 2 2018

BÀI 2:

a)   Tại   x = 2;   y = -3   thì

                \(2.2^2-3. \left(-3\right)\)\(=8+9\)\(=17\)

b)   Tại  x = 2;  y = -3   thì

              \(\frac{1}{9}.2^3.\left(-3\right)^2-4.2\)\(=8-8\)\(=0\)

7 tháng 1 2018

\(5x^2y-3xy+\frac{1}{2}x^2y-xy+5xy-\frac{1}{3}x+\frac{1}{2}+\frac{2}{3}x-\frac{1}{4}\)

\(=\left(5x^2y+\frac{1}{2}x^2y\right)+\left(-3xy-xy+5xy\right)+\left(-\frac{1}{2}x+\frac{2}{3}x\right)+\left(\frac{1}{2}-\frac{1}{4}\right)\)

\(=\frac{11}{2}x^2y+xy+\frac{1}{6}x+\frac{1}{2}\)

6 tháng 5 2020

undefined

11 tháng 3 2017

=—11/4xy^2+2x^2y+6/5xy

11 tháng 3 2017

A=\(\left(3xy^2-2xy^2-4xy^2\right)+\left(2x^2y+\frac{1}{4}x^2y\right)+\left(xy+\frac{1}{5}xy\right)\)

A=\(-3xy^2+\frac{9}{4}x^2y+\frac{6}{5}xy\)

3 tháng 3 2019

a) dễ mà

\(A=-\frac{3}{4}xy^2+\frac{1}{2}x^3yz+\frac{3}{4}xy^2-5x^3yz-8+5x^3yz\)

\(\Leftrightarrow A=-2x^3yzx^3yz-8\)

Vậy bậc của đa thức là 10

b)  dễ  thay số vào đa thức đã thu gọn

3 tháng 3 2019

a) 

\(A=-\frac{3}{4}xy^2+\frac{1}{2}x^3yz+\frac{3}{4}xy^2-5x^3tz-8+\frac{5}{2}x^3yz\)

\(A=\left(-\frac{3}{4}xy^2+\frac{3}{4}xy^2\right)+\left(\frac{1}{2}x^3yz-5x^3yz+\frac{5}{2}x^3yz\right)-8\)

\(A=0+\left(-2\right)x^3yz-8\)

\(A=-2x^3yz-8\)

+) Bậc của đa thức trên là 4

b) Thay x = -1 ; y = 2 ; z = 3 vào đa thức trên ta có :

\(A=-2.\left(-1\right)^3.2.3-8\)

\(A=4\)

Vậy giá trị của đa thức A tại x = -1 ; y = 2 ; z = 3 là 4.