Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Để \(\overline{1996ab}\)chia hết cho cả 2 và 5 thì b=0
Thay b=0, ta được \(\overline{1996a0}⋮9\)thì 1+9+9+6+a+0\(⋮\)9
25\(⋮\)9
\(\Rightarrow\)a=2
Vậy a=2 và b=0.
2. Đề \(\overline{m340n}⋮5\)thì n\(\in\){0;5}
Với n=5 thì m+3+4+0+5=m+12\(⋮\)9
\(\Rightarrow\)m=6
Với n=0 thì m+3+4+0+0=m+7\(⋮\)9
\(\Rightarrow\)m=2
Vậy m=6 và n=5 hoặc m=2 và n=0.
Để \(\overline{2007ab}\)chia hết cho cả 2 và 5 thì b=0
Thay b=0, ta được \(\overline{2007a0}⋮9\)thì 2+0+0+7+a+0=a+9\(⋮\)9
\(\Rightarrow\)a=0
Vậy a=0 và b=0
Lưu ý : dấu \(⋮\)là chia hết cho
Để x14y chia hết cho 2, 5, 9
=> Thì y = 0 và số chia hết cho 2 và 5 là số có tận cùng là 0
Để x140 chia hết cho 9
=> Thì tổng các số là số chia hết cho 9. Tức là:
x + 1 + 4 + 0 = x + 5 = số chia hết cho 9
=> Là số 4 ( vì 5 + 4 = 9 : 9 = 1 )
Vậy x = 4 và y = 0
Để chia cho 2 dư 1: -> y gồm các số: 1,3,5,7,9 (1)
Để chia cho 5 dư 1: -> y gồm các số: 1 và 6 (2)
Từ (1) và (2) => y=1
x7531 chia cho 9 dư 1 -> x+7+5+3+1 chia 9 dư 1 <=> x+16 chia 9 dư 1
=> x = 3
Vậy số cần tìm là 37531
\(\overline{2003ab}\) : 2;5 dư 1 ⇔ b = 1
\(\overline{2003ab}\) : 9 dư 1 ⇔ 2+0+0+3+a+b - 1⋮ 9
4 + a + 1 ⋮ 9
5 + a ⋮ 9 ⇒ a =4;
Thay a = 4; b = 1 vào biểu thức \(\overline{2003ab}\) ta có
\(\overline{2003ab}\) = 200341
Bài 1:
Đặt \(X=\overline{4a2b}\)
X chia hết cho 2;5 nên X chia hết cho 10
=>X có chữ số tận cùng là 0
=>b=0
=>\(X=\overline{4a20}\)
X chia hết cho 9
=>\(\left(4+a+2+0\right)⋮9\)
=>\(\left(a+6\right)⋮9\)
=>a=3
vậy: X=4320
Bài 2:
Đặt \(A=\overline{20a2b}\)
A chia hết cho 25 mà A có tận cùng là \(\overline{2b}\)
nên b=5
=>\(A=\overline{20a25}\)
A chia hết cho 9
=>\(2+0+a+2+5⋮9\)
=>\(a+9⋮9\)
=>\(a⋮9\)
=>\(a\in\left\{0;9\right\}\)
Bài 3:
Đặt \(B=\overline{3x57y}\)
B chia 5 dư 3 nên B có tận cùng là 3 hoặc 8(1)
B chia 2 dư 1 nên B có tận cùng là số lẻ (2)
Từ (1),(2) suy ra B có tận cùng là 3
=>y=3
=>\(B=\overline{3x573}\)
B chia hết cho 9
=>\(3+x+5+7+3⋮9\)
=>\(x+18⋮9\)
=>\(x\in\left\{0;9\right\}\)
Y ở đâu vậy bạn
20x19y chia hết cho 2 và 5 nên y = 0.
Để 20x19y chia hết cho 9 thì \(\left(2+0+x+1+9+y\right)⋮9\)
\(\Leftrightarrow\left(12+x+y\right)⋮9\)
\(\Leftrightarrow x+y\in\left\{6;15;24;...\right\}\)
Mà \(x+y\le18\) nên \(x+y\in\left\{6;15\right\}\)
TH1: x + y = 6
hay x + 0 = 6
\(\Leftrightarrow x=6-0\)
\(\Leftrightarrow x=6\)
TH2: x + y = 15
hay x + 0 = 15
\(\Leftrightarrow x=15-0\)
\(\Leftrightarrow x=15\)(loại vì x có 1 chữ số)
Vậy x = 6 và y = 0