Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{6x^2+9x+8x+12}{2x+3}=\dfrac{3x\left(2x+3\right)+4\left(2x+3\right)}{2x+3}\)
=3x+4
b: \(=\dfrac{5x^2-2x+15x-6}{5x-2}\)
\(=\dfrac{x\left(5x-2\right)+3\left(5x-2\right)}{5x-2}=x+3\)
c: \(=\dfrac{-8x^2+20x+2x-5-10}{2x-5}=-4x+1+\dfrac{-10}{2x-5}\)
d: \(=\dfrac{14x^2-35x+2x-5}{2x-5}=\dfrac{7x\left(2x-5\right)+\left(2x-5\right)}{2x-5}\)
=7x+1
e: \(=\dfrac{2x^3+x^2+6x^2+3x+12x+6}{2x+1}\)
\(=\dfrac{x^2\left(2x+1\right)+3x\left(2x+1\right)+6\left(2x+1\right)}{2x+1}=x^2+3x+6\)
f: \(=\dfrac{x^3-2x^2+6x^2-12x+x-2}{x-2}=x^2+6x+1\)
g: \(=\dfrac{12x^3+6x^2-4x^2-2x+6x+3}{2x+1}=6x^2-2x+3\)
a)xm+4+xm+3-x-1
=(xm+4-x)+(xm+3-1)
=x(xm+3-1)+(xm+3-1)
=(x+1)(xm+3-1)
Với x=-2 ta có:... bn tự thay
b)x6-x4+2x3+2x2=x6-2x5+2x4+2x5-4x4+4x3+x4-2x3+2x2
=x4(x2-2x+2)+2x3(x2-2x+2)+x2(x2-2x+2)
=(x4+2x3+x2)(x2-2x+2)
=[x2(x2+2x+1)](x2-2x+2)
=x2(x+1)2(x2-2x+2)
Với x=-2 bn tự thay nhé h mk bận
1. Ta có: \(3xy\left(a^2+b^2\right)+ab\left(x^2-9y^2\right)\)
\(=3xya^2+3xyb^2+abx^2+ab9y^2\)
\(=\left(3xya^2+abx^2\right)+\left(3xyb^2+ab9y^2\right)\)
\(=ax\left(3ya+bx\right)+3by\left(xb+3ya\right)\)
\(=\left(3ya+xb\right)\left(3yb+ax\right)\)
2.Check lại đề hộ mình nha:((
Câu 2 nên sủa lại đề nha
2. xy(a2+2b2)+ab(2x2+y2)
=xya2+xy2b2+ab2x2+aby2
=(xya2+aby2)+(xy2b2+ab2x2)
=ay(ax+by)+2bx(by+ax)
=(ax+by(ay+2bx)
\(\left(x^2+x\right)^2-2x^2-2x-15\)
\(=\left(x^2+x\right)^2-\left(2x^2+2x+15\right)\)
\(=\left(x^2+x\right)^2-\left[\left(2x^2+2x\right)+15\right]\)
\(=\left(x^2+x\right)^2-\left[2.\left(x^2+x\right)+15\right]\)
\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-15\) \(\left(1\right)\)
đặt \(x^2+x=t\)
\(\left(1\right)\)\(=\) \(t^2-2t-15\)
\(=\left(t-1\right)^2-16\)
\(=\left(t-1-4\right)\left(t-1+4\right)\)
\(=\left(t-5\right)\left(t+3\right)\)
thay \(t=x^2+x\) ta có
\(\left(1\right)=\left(x^2+x-5\right)\left(x^2+x+3\right)\)
các câu còn lại tương tự nha
học tốt
Lời giải:
a.
\(\frac{10}{x+2}=\frac{60}{6(x+2)}=\frac{60(x-2)}{6(x+2)(x-2)}=\frac{60(x-2)}{6(x^2-4)}\)
\(\frac{5}{2x-4}=\frac{15(x+2)}{6(x-2)(x+2)}=\frac{15(x+2)}{6(x^2-4)}\)
\(\frac{1}{6-3x}=\frac{x+2}{3(2-x)}=\frac{2(x+2)^2}{6(2-x)(2+x)}=\frac{-2(x+2)^2}{6(x^2-4)}\)
b.
\(\frac{1}{x+2}=\frac{x(2-x)}{x(x+2)(2-x)}=\frac{x(2-x)}{x(4-x^2)}\)
\(\frac{8}{2x-x^2}=\frac{8(x+2)}{(x+2)x(2-x)}=\frac{8(x+2)}{x(4-x^2)}\)
c.
\(\frac{4x^2-3x+5}{x^3-1}\)
\(\frac{1-2x}{x^2+x+1}=\frac{(1-2x)(x-1)}{(x-1)(x^2+x+1)}=\frac{-2x^2+3x-1}{x^3-1}\)
\(-2=\frac{-2(x^3-1)}{x^3-1}\)
Thêm một đk: a, b, c là số nguyên
Có: \(2x^3+15x^2+22x-15\)
\(=\left(2x^3-x^2\right)+\left(16x^2-8x\right)+\left(30x-15\right)\)
\(=x^2\left(2x-1\right)+8x\left(2x-1\right)+15\left(2x-1\right)\)
\(=\left(2x-1\right)\left(x^2+8x+15\right)\)
= \(\left(2x-1\right)\left[\left(x^2+3x\right)+\left(5x+15\right)\right]\)
\(=\left(2x-1\right)\left(x+3\right)\left(x+5\right)\)
Theo bài ra : \(2x^3+15x^2+22x-15=\left(2x-a\right)\left(x+b\right)\left(x+c\right)\)
=> a + b + c = 1 + 3 + 5 = 9.