Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có tập nghiệm của phương trình là:
\(\left(x+2\right)\left(2x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\2x=1\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{2}\\x=3\end{matrix}\right.\)
Tập hợp S là:
\(S=\left\{-2;\dfrac{1}{2};3\right\}\)
Lần lược các phương án:
A. \(-2\in S\) (đúng)
B. \(3\in S\) (đúng)
C. \(2\in S\) (Sai)
D. \(\dfrac{1}{2}\in S\) (Đúng)
⇒ Chọn C
Khi x = 4 căn thức triệt tiêu nên x = 4 không là nghiệm của bất phương trình, do đó B, C, D đều sai.
Đáp án: A
\(\dfrac{x^2+x+3}{x^2-4}\ge1\Leftrightarrow\dfrac{x^2+x+3}{x^2-4}-1\ge0\)
\(\Leftrightarrow\dfrac{x+7}{x^2-4}\ge0\Rightarrow\left[{}\begin{matrix}-7\le x< -2\\x>2\end{matrix}\right.\)
\(\Rightarrow S\cap\left(-2;2\right)=\varnothing\)
Ta có :
\(x^2-(8m+1)x+15m^2+3m\leq 0 \\ \Leftrightarrow (x-3m)(x-5m-1) \leq 0\\ \Leftrightarrow x\in [3m;5m-1] \ hoặc \ x\in[5m-1;3m] \)
Độ dài của S trên trục số là:
\(|5m-1-3m|>3 \\ \Leftrightarrow |2m-1| > 3 \\ \Leftrightarrow 2m-1 > 3 \ hoặc \ 2m-1 <-3\\\Leftrightarrow m>2 \ hoặc\ m<-1\)
\(\left(3-m\right)x>-m^2+4m-3\)
\(\Leftrightarrow\left(m-3\right)x< m^2-4m+3\)
\(\Leftrightarrow x< \dfrac{m^2-4m+3}{m-3}=m-1\)
Vậy \(x< m-1\)
a, \(\dfrac{x-2}{x+1}\ge\dfrac{x+1}{x-2}\)
⇔ \(\dfrac{\left(x-2\right)^2-\left(x+1\right)^2}{\left(x-1\right)\left(x+2\right)}\ge0\)
⇔ \(\dfrac{3-6x}{\left(x+1\right)\left(x-2\right)}\) ≥ 0
⇔ \(\dfrac{2x-1}{\left(x+1\right)\left(x-2\right)}\) ≤ 0
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\-1< x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\\left[{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}\le x< 2\\x< -1\end{matrix}\right.\)
Vậy tập nghiệm là \(\left(-\infty;-1\right)\cup\) \(\left[\dfrac{1}{2};2\right]\)\ {2}
Bạn có thể biến cái ngoặc vuông kia (ở chỗ số 2) thành ngoặc tròn
Còn vì sao mình không biến cái ngoặc vuông kia (ở chỗ số 2) thành ngoặc tròn thì đó là một câu chuyện dài
b, tương tự, chuyển vế đổi dấu
Chọn D
Ta có: (1)
TH1: Nếu x< ½ bpt (1) trở thành: 1-2x ≤ x hay x ≥ 1/3
Kết hợp với điều kiện, ta có: 1/3 ≤ x < ½
TH2: Nếu x ≥ ½ , bpt (1) trở thành: 2x-1 ≤ x hay x ≤ 1
Kết hợp với điều kiện, ta có: ½ ≤ x ≤ 1
Vậy tập nghiệm của bpt là: S= [ 1/3; 1] .Khi đó; P= 1/ 3
Ta có: 3 - x < 2 x ⇔ - x - 2 x < - 3 ⇔ - 3 x < 3 ⇔ x > 1
Do đó, tập nghiệm của bất phương trình đã cho là S = 1 ; + ∞