Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác BMD và tam giác BHD có:
BD cạnh chung
\(\widehat{MBD}\)=\(\widehat{HBD}\)(gt)
=> t.giác BMD=t.giác BHD(CH-GN)
b,xét t.giác NMB và t.giác AHB có:
MB=HB(theo câu a)
\(\widehat{B}\)chung
=> t.giác NMB=t.giác AHB(CGV-GN)
=>\(\widehat{MNB}\)=\(\widehat{HAB}\); NB=AB
xét t.giác DNB và t.giác DAB có:
\(\widehat{DNB}\)=\(\widehat{DAB}\)( cmt)
NB=AB(cmt)
\(\widehat{NBD}\)=\(\widehat{ABD}\)(gt)
=>t.giác DNB=t.giác DAB(g.c.g)
=> DN=DA
=> t.giác ADN cân tại A
a: Xét ΔAHD vuông tại H và ΔAID vuông tại I có
AD chung
AH=AI
=>ΔAHD=ΔAID
=>góc HAD=gócIAD
=>AD là phân giác của góc HAI
b: Xét ΔDHM vuông tại H và ΔDIC vuông tại I có
DH=DI
góc HDM=góc IDC
=>ΔDHM=ΔDIC
=>DM=DC
=>ΔDMC cân tại D
c: AH+HM=AM
AI+IC=AC
mà AH=AI và HM=IC
nên AM=AC
=>ΔAMC cân tại A
mà AN là trung tuyến
nên AN vuông góc MC
Xét ΔCAM có
AN,MI,CH là các đường cao
=>AN,MI,CH đồng quy