K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DT
27 tháng 4 2020
Bài 5: Cho tam giác ABC có ba góc nhọn, AB<AC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE. So sánh độ dài HB và HC.
Bài 6: Cho tam giác ABC có AB<AC. Tia phân giác của góc B và C cắt nhau tại I. Từ I vẽ IH vuông góc với BC. So sánh độ dài HB và HC.
Hình tự vẽ nha.
Trong tam giác BDC có:
góc DBC + BDC + DCB = 1800
=> DBC = 180 - (DCB + BDC) = 180-(45 + 90) = 450
Có: góc DBC = DCB = 450
=> tam giác BDC vuông cân tại D
=> DB = DC (1)
Ta có: góc ABD + góc BAD = 900
góc ACE + góc CAE = 900
=> góc ABD = góc DCH ( cùng phụ với góc BAD) (2)
Xét tam giác ABD và tam giác HCD có:
góc ADB = HDC = 900
cạnh BD = CD (chứng minh trên (1))
góc ABD = góc HCD (chứng minh trên (2))
=> tam giác ABD = tam giác HCD (gcg)
=> AB = HC
Vậy AB = HC