Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\frac{AM}{AD}+\frac{BN}{BE}+\frac{CS}{CF}=4\Leftrightarrow \frac{DM}{AD}+\frac{EN}{BE}+\frac{FS}{CF}=1\)
\(\Leftrightarrow \frac{HD}{AD}+\frac{EH}{BE}+\frac{HF}{CF}=1\) \((\star)\)
Gọi diện tích của các tam giác \(AFH, BFH, BHD, DHC, EHC, AEH\) lần lượt là \(a,b,c,d,e,f\)
Ta có :
\(\left\{\begin{matrix} \frac{DH}{AD}=\frac{S_{BHD}}{S_{BAD}}=\frac{S_{CHD}}{S_{ADC}}\\ \frac{EH}{BE}=\frac{S_{AEH}}{S_{ABE}}=\frac{S_{CHE}}{S_{EBC}}\\ \frac{HF}{CF}=\frac{S_{BFH}}{S_{BFC}}=\frac{S_{FAH}}{S_{FAC}}\end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} \frac{DH}{AD}=\frac{c}{a+b+c}=\frac{d}{e+f+d}=\frac{c+d}{a+b+c+d+e+f}\\ \frac{EH}{BE}=\frac{f}{a+b+f}=\frac{e}{e+c+d}=\frac{e+f}{a+b+c+d+e+f}\\ \frac{HF}{CF}=\frac{b}{b+c+d}=\frac{a}{a+f+e}=\frac{a+b}{a+b+c+d+e+f}\end{matrix}\right.\)
\(\Rightarrow \frac{DH}{AD}+\frac{EH}{BE}+\frac{HF}{CF}=1\)
Ta có \((\star)\) nên phép cm hoàn tất.
Kẻ AH | BC.
Xét \(\Delta AHB\) vuông tại H:
\(AH^2+HB^2=AB^2\) (Định lý Pytago)
\(\Rightarrow AH^2=AB^2-HB^2\)
Xét \(\Delta AHM\) vuông tại H:
\(AH^2+HM^2=AM^2\)(Định lý Pytago)
\(\Rightarrow\left(AB^2-HB^2\right)+HM^2=AM^2\)
\(AB^2+\left(HM-HB\right)\left(HM+HB\right)=AB^2+BM.\left(HM-HB\right)=AB^2+\frac{1}{2}BC\left(HM-HB\right)=AM^2\)
\(\Rightarrow AB^2=AM^2-\frac{1}{2}BC\left(HM-HB\right)\)
Xét \(\Delta AHC\) vuông tại H:
\(AH^2+HC^2=AC^2\)(Định lý Pytago)
\(\Rightarrow AC^2-AM^2=HC^2-HM^2=\left(HC-HM\right)\left(HC+HM\right)=MC\left(HC+HM\right)=\frac{1}{2}BC\left(HC+HM\right)\)
\(\Rightarrow AC^2=AM^2+\frac{1}{2}BC\left(HC+HM\right)\)
\(\Rightarrow AB^2+AC^2=AM^2-\frac{1}{2}BC\left(HM-HB\right)+AM^2+\frac{1}{2}BC\left(HC+HM\right)\)
\(=2AM^2+\frac{1}{2}BC.\left(HC+HM-HM+HB\right)\)
\(=2AM^2+\frac{1}{2}BC^2\)
\(\Rightarrow2\left(AB^2+AC^2\right)=2\left(2AM^2+\frac{1}{2}BC^2\right)\)
\(2AB^2+2AC^2=4AM^2+BC^2\)
\(\Rightarrow2AB^2+2AC^2-BC^2=4AM^2\)
áp dụng hệ thức lượng trong tam giác
AM2=(AB2+AC2)/2-BC2/4
2AM2=AB2+AC2-1/2.BC2
2AM2+1/2.BC2=AB2+AC2-1/2BC2+1/2BC2=AB2...
chúc bạn thành công!!!
a) Thấy 52=32+42 hay BC2=AB2+AC2
\(\Rightarrow\Delta ABC\) vuông tại A
b)Hình thì chắc bạn tự vẽ được nha
Xét 2\(\Delta ABH\) và\(\Delta DBH\) có:
AB=DB
\(\widehat{BAH}=\widehat{BDH}\)
BH chung
\(\Rightarrow\Delta ABH=\Delta DBH\left(ch-cgv\right)\)
\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)
\(\Rightarrow\)BH là tia phân giác \(\widehat{ABC}\)
c)tam giác ABC đã có các cạnh có độ dài khác nhau nên tam giác ABC ko cân được đâu chị
a) Ta có :
-BC2=52=25(1)
-AB2+AC2=32+42=25(2)
-Từ (1)và(2)suy ra BC2=AB2+AC2
-do đó tam giác ABC vuông tại A(áp dụng định lý Py-ta-go đảo)
-vậy tam giác ABC là tam giác vuông .
b)Xét \(\Delta\) ABH(vuông tại A) và \(\Delta\) DBH(vuông tại D) có
-BH là cạnh huyền chung
-AB=BD(gt)
-Do đó:\(\Delta\) ABH=\(\Delta\) DBH(cạnh huyền-cạnh góc vuông)
\(\Rightarrow\)Góc ABH =Góc DBH(hai góc tương ứng)
Vậy BH là tia phân giác của góc ABC
Hình này hơi sai vì mk ko đo nhưng nó chỉ mang tính chất minh họa
A) Ta có AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 100 - 36 => AB = 8cm
B) AM = BM (Do CM là trung tuyến của tam giác ABC)
CM = MD (Theo đề bài)
góc AMC = BMD (hai góc đối đỉnh)
=> Tam giác MAC = tam giác MBD (cgc)
=> AC = BD (Hai cạnh tương ứng của hai tam giác bằng nhau)
C) Ta có BC + BD > CD
=> BC + AC > 2 CM
theo t/c góc ngoài tam giác ACB ta có:
ACM=CAB+ABC=180-2ABC+ABC=180-ABC
ABN=180-MAB(do BN//AM)
=180-ABC=> DPCM