Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi H là hình chiếu của A trên tam giác, suy ra H là trung điểm BC.
\(AH=d\left(A,BC\right)=\dfrac{9}{\sqrt{2}}\)
Gọi C(x;y) \(\Rightarrow\left\{{}\begin{matrix}x_G=\dfrac{x+2}{3}\\y_G=\dfrac{y-6}{3}\end{matrix}\right.\) \(\Rightarrow3\left(\dfrac{x+2}{3}\right)-\dfrac{y-6}{3}+1=0\)
\(\Leftrightarrow3x-y+15=0\Rightarrow y=3x+15\Rightarrow C\left(x;3x+15\right)\)
\(S_{ABC}=\dfrac{1}{2}\left|\left(x_B-x_A\right)\left(y_C-y_A\right)-\left(x_C-x_A\right)\left(y_B-y_A\right)\right|\)
\(\Leftrightarrow3=\dfrac{1}{2}\left|-2\left(3x+19\right)-2\left(x-2\right)\right|\)
\(\Rightarrow x=...\)
Tọa độ trọng tâm của ΔABC là:
\(\left\{{}\begin{matrix}x=\dfrac{-4+2+\left(-1\right)}{3}=\dfrac{-5+2}{3}=-\dfrac{3}{3}=-1\\y=\dfrac{5+3+4}{3}=4\end{matrix}\right.\)
Do \(C\in\Delta\) nên tọa độ có dạng: \(C\left(1+t;2+t\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(t+2;t\right)\\\overrightarrow{BC}=\left(t-2;t+1\right)\end{matrix}\right.\)
\(AC=BC\Rightarrow AC^2=BC^2\)
\(\Rightarrow\left(t+2\right)^2+t^2=\left(t-2\right)^2+\left(t+1\right)^2\)
\(\Rightarrow6t=1\Rightarrow t=\dfrac{1}{6}\)
\(\Rightarrow C\left(\dfrac{7}{6};\dfrac{13}{6}\right)\)
có nhầm bài không bạn