Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Tam giác ABC cân ở A=>góc ABC=ACB
CD=CB=>Tam giác CBD cân ở C=>CDB=ABC
=>ACB=CDB(cùng = ABC)
bạn tham khảo tại đây Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
tíc đúng cho tớ nhé
a/ Xét ΔABM;ΔACMΔABM;ΔACM có :
⎧⎩⎨⎪⎪AB=ACBˆ=CˆMB=MC{AB=ACB^=C^MB=MC
⇔ΔAMB=ΔAMC(c−g−c)⇔ΔAMB=ΔAMC(c−g−c)
b/ Xét ΔBHM;ΔCKMΔBHM;ΔCKM có :
⎧⎩⎨⎪⎪⎪⎪BHMˆ=CKMˆ=900Bˆ=CˆMB=MC{BHM^=CKM^=900B^=C^MB=MC
⇔ΔBHM=ΔCKM(ch−gn)⇔ΔBHM=ΔCKM(ch−gn)
⇔BH=CK
a) Xét tg ABM và ACM có :
AB=AC(gt)
AM-cạnh chung
MB=MB(gt)
=> Tg ABM=ACM(c.c.c)
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)
=> AM là tia pg góc A (đccm)
b) Xét tg BNC và DNC có :
BC=CD(gt)
\(\widehat{DCN}=\widehat{BCN}\left(gt\right)\)
NC-cạnh chung
=> Tg BNC=DNC(c.g.c)
\(\Rightarrow\widehat{CND}=\widehat{CNB}=\frac{\widehat{DNB}}{2}=\frac{180^o}{2}=90^o\)
\(\Rightarrow CN\perp BD\left(đccm\right)\)
c) Có : AB=AC(gt)
=> Tg ABC cân tịa A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)(1)
- Do tg BNC=DNC(cmt)
\(\widehat{ABC}=\widehat{BDC}\)(2)
- Từ (1) và (2)\(\Rightarrow\widehat{BDC}=\widehat{ACB}\)
- Có : \(\widehat{ADC}+\widehat{BDC}=180^o\)
\(\widehat{ACB}+\widehat{BCE}=180^o\)
Mà : \(\widehat{BDC}=\widehat{ACB}\left(cmt\right)\)
\(\Rightarrow\widehat{BCE}=\widehat{ADC}\left(đccm\right)\)
d) Xét tg ACD và EBC có :
BC=CD(gt)
DA=CE(gt)
\(\widehat{BCE}=\widehat{ADC}\left(cmt\right)\)
=> Tg ACD=EBC(c.g.c)
=> AC=BE
Mà AC=AB(gt)
=> BE=AB (đccm)
#H
a: Xét ΔABC và ΔDEC có
CA=CD
\(\widehat{ACB}=\widehat{DCE}\)
CB=CE
Do đó:ΔACB=ΔDCE
b: Xét tứ giác ABDE có
C là trung điểm của AD
C là trung điểm của BE
Do đó: ABDE là hình bình hành
Suy ra: AB//DE
c: Xét ΔAMC và ΔDNC có
AM=DN
\(\widehat{MAC}=\widehat{NDC}\)
AC=DC
Do đó: ΔAMC=ΔDNC
d: Xét tứ giác AMDN có
AM//DN
AM=DN
Do đó: AMDN là hình bình hành
Suy ra: Hai đường chéo AD và MN cắt nhau tại trung điểm của mỗi đường
mà C là trung điểm của AD
nên C là trung điểm của MN
https://hoc24.vn/cau-hoi/1cho-tam-giac-abc-co-2-duong-trung-tuyen-bm-va-cn-cat-nhau-tai-g-chung-minh-bm-cn-dfrac32bc2cho-tam-giac-abc-d-la-trung-diem-ac-tren-bd-lay-e-sao-cho-be2ed-f-thuoc-tia-doi-cua-tia.5863553679489
trl câu này hộ mik với chiều nay cần dùng r
a) Xét tứ giác ACDB có:
+ M là trung điểm của BC (gt).
+ M là trung điểm của AD (MD = MA).
=> Tứ giác ACDB là hinhg bình hành (dhnb).
Mà ^BAC = 90o (Tam giác ABC vuông tại A).
=> Tứ giác ACDB là hình chữ nhật (dhnb).
=> AB // CD và CD \(\perp\) AC (Tính chất hình bình hành).
b) Trên tia đối của HA lấy E sao cho HE = HA (gt).
=> H là trung điểm của AE.
Xét tam giác CAE có:
+ CH là đường cao (CH \(\perp\) AE).
+ CH là đường trung tuyến (H là trung điểm của AE).
=> Tam giác CAE cân tại C.
=> CE = CA (Tính chất tam giác cân).
c) Ta có: CE = CA (cmt).
Mà CA = DB (Tứ giác ACDB là hình chữ nhật).
=> CE = DB (= CA).
d) Xét tam giác ADE có:
+ M là trung điểm của AD (MD = MA).
+ H là trung điểm của AE (gt).
=> MH là đường trung bình.
=> MH // DE (Tính chất đường trung bình trong tam giác).
Mà MH \(\perp\) AE (do AH \(\perp\) BC).
=> DE \(\perp\) AE (đpcm).
a, CD=CB=> tam giác BDC cân => gócCDB = gócCBD mà gócACB=gócABC(tam giác ABC cân)=> gócACB=gócCDB
theo ý kiến mình là câu c đề sai