K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2018

a, CD=CB=> tam giác BDC cân => gócCDB = gócCBD mà gócACB=gócABC(tam giác ABC cân)=> gócACB=gócCDB

18 tháng 1 2018

theo ý kiến mình là câu c đề sai

9 tháng 8 2015

a)Tam giác ABC cân ở A=>góc ABC=ACB

CD=CB=>Tam giác CBD cân ở C=>CDB=ABC

=>ACB=CDB(cùng = ABC)

9 tháng 8 2015

bạn tham khảo tại đây Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

tíc đúng cho tớ nhé

5 tháng 7 2017

A B C D E F

A B C D E

5 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Nguyễn Thị Ngọc Ánh - Toán lớp 7 - Học toán với OnlineMath

1.  a) Vì tam giác ABC cân tại A  =>B=ACD  Mà ACD=ECN(đối đỉnh)  =>B=ECN  Vì AB=AC(tam giác ABC cân tại A)  Mà AC=IC  =>AB=IC  Xét tam giác ABD và tam giác ICE có:  AB=IC(c/m trên)  B=ECN(c/m trên)  BD=CE(gt)  =>tam giác ABD=tam giác ICE(c.g.c)  2.  Xét tam giác BMD và tam giác CEN có:  BDM=CNE(=90 độ)  BD=CE(gt)  B=ECN(c/m trên)  =>tam giác BDM=tam giác CEN(g.c.g)  =>BM=CN(2 cạnh tương ứng)

4 tháng 1 2020

E D A C B F I

a) Xét \(\Delta\)BAE và \(\Delta\)DAC có: ^BAE = ^DAC ( đối đỉnh ) ; AD = AB ( gt ) ; AE = AC ( gt )

=> \(\Delta\)BAE = \(\Delta\)DAC ( c.g.c)

=> BE = DC 

b) Tương tự câu a dễ dàng cm đc: \(\Delta\)ADE = \(\Delta\)ABC => ^ADE = ^ABC => DE//BC

=> ^EDI = ^DIC  mà ^EDI = ^BDI  ( DI là phân giác ^BDE ) 

=> ^DIC = ^BDI hay ^DIB = ^IDB => \(\Delta\)BDI cân tại B.

c) Ta có: ^DBC là góc ngoài tại đỉnh B của \(\Delta\)BDI => ^DBC = ^BDI + ^BID  = 2. ^BID  = 2. ^CIF( theo b) (1)

Có: CF là phân giác ^BCA =>^BCF = ^ACF => ^BCA = ^BCF + ^ACF = 2. ^BCF = 2. ^ICF  (2)

Lại có: ^CFD  là góc ngoài của \(\Delta\)FCI  => ^CFD = ^CIF + ^ICF  (3)

Từ (1) ; (2) ; (3) => 2 .^CFD = 2 ^CIF + 2. ^ICF = ^DBC + ^BCA = ^DBC + ^CED  (  ^CED = ^BCA  vì ED //BC )

24 tháng 2 2022

098765432rtyuiorewerio65yuy5t

yyyyyyyyyyyyyyyyyyyyyyy

13 tháng 5 2021

Có: Góc BAE + BAD = góc BCF + BCA (=180 độ)

Góc BAD = BCA

⇒ góc BAE = FCB

Xét △BAE và △FCB có:

AB = CF

BAE = FCB

AE = CB

⇒△BAE = △FCB (c.g.c)

⇒EBA = CFB

Mà góc CFB + ABF = 90 độ ⇒EBA + ABF = 90 độ

⇒ góc EBF = 90 độ ⇒BE vuông góc với BF