Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Ta có f(x) + g(x) = (2x2 - 5x - 3) + (-2x2 - 2x + 1) = -7x - 2
Cho -7x - 2 = 0 ⇒ x = -2/7
Ta có f(x) + g(x) = 4x - 1. Khi đó nghiệm của đa thức tổng là x = 1/4. Chọn C
Ta có: P(x) + Q(x)
= 2x2 + 5x - 1 + (-2x2 -4x + 3) = x + 2
Cho x + 2 = 0 ⇒ x = -2. Chọn C
a) P(x) = 5x5 - 4x2 + 7x + 15
Q(x) = 5x5 - 4x2 + 3x + 8
b) Có: P(x) - Q(x) = 4x + 7
P(x) - Q(x) = 0 <=> x = \(-\dfrac{-7}{4}\)
`a,```P(x) = 8x^5 +7x -6x^2 -3x^5 +2x^2+15`
`= (8x^5 -3x^5 ) +(-6x^2+2x^2) +7x+15`
`=5x^5 -4x^2 +7x+15`
`Q(x) =4x^5 +3x-2x^2 +x^5 -2x^2+8`
`=(4x^5+x^5) +(-2x^2 -2x^2)+3x+8`
`= 5x^5 - 4x^2 +3x+8`
`b, P(x) -Q(x)=(5x^5 -4x^2 +7x+15)-(5x^5 - 4x^2 +3x+8)`
`= 5x^5 -4x^2 +7x+15-5x^5 +4x^2 -3x-8`
`= (5x^5-5x^5)+(-4x^2+4x^2) +(7x-3x)+(15-8)`
`= 0 + 0 +4x + 7`
`=4x+7`
c. Ta có h(x) = 0 ⇒ 5x + 1 = 0 ⇒ x = -1/5
Vậy nghiệm của đa thức h(x) là x = -1/5 (1 điểm)
a: 6x^2-7x-3=0
=>6x^2-9x+2x-3=0
=>(2x-3)(3x+1)=0
=>x=-1/3 hoặc x=3/2
=>ĐPCM
b: 2x^2-5x-3=0
=>2x^2-6x+x-3=0
=>(x-3)(2x+1)=0
=>x=-1/2 hoặc x=3
=>ĐPCM
`x^2 - 3x = 0`
`<=> x.(x-3)=0`
`<=> x = 0` hoặc `x-3=0`
`<=> x = 0 ` hoặc `x = 3`
Vậy `S = { 0;3}`
`2x^2 + 5x = 0`
`<=> x.(2x + 5)=0`
`<=> x = 0` hoặc `2x+5=0`
`<=> x = 0` hoặc `2x= -5`
`<=> x = 0` hoặc `x = -5/2`
Vậy `S = {0; -5/2}`
\(a,x^2-3x=0\\ x\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\\ b,2x^2+5x=0\\ x\left(2x+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\2x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
`x(1-2x)+(2x^2-x+4)=0`
`x-2x^2+2x^2-x+4=0`
`(x-x)+(2x^2-2x^2)+4=0`
`0x+4=0`
`=>` PTVN.
\(G\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+4\right)\)
\(G\left(x\right)=x-2x^2+2x^2-x+4\)
\(G\left(x\right)=4\left(\ne0\right)\)
Vậy phương trình vô nghiệm
\(2x^2-5x-3=0\)
=>\(2x^2+x-6x-3=0\)
<=> \(x.\left(2x+1\right)-3.\left(2x+1\right)=0\)
<=>\(\left(x-3\right)\left(2x+1\right)=0\)
=> x-3=0 <=> x=3
hoặc 2x+1=0 => x=\(\dfrac{-1}{2}\)
`2x^2-5x-3=0`
`(2x^2+x)-(6x+3)=0`
`x(2x+1)-3(2x+1)=0`
`(x-3)(2x+1)=0`
\(\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{2}\end{matrix}\right.\)