K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2018

Bài làm :

a) \(\left(a+b\right)\left(a+b\right)=\left(a+b\right)^2=a^2+2ab+b^2\)

b) \(\left(a-b\right)^2=a^2-2ab+b^2\)

c) \(\left(a+b\right)\left(a-b\right)=a^2-b^2\)

d) \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)

e) \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)

f) \(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)

g) \(\left(a-b\right)\left(a^2+ab+b^2\right)=a^3-b^3\)

10 tháng 6 2018

đúng k bn

Cái này lên lớp 8 mới hok nhưng bạn chịu khó hiểu nha :

 \(\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)

Ta thấy dấu - vs dấu + triệt tiêu nha còn :

\(=a^3+b^3\)

Thế là xong 

Ủng hộ mik nha 

Thnaks

1 tháng 7 2016

k còn cách khác s

Đặt \(\hept{\begin{cases}a+b=m\\b+c=n\\c+a=p\end{cases}}\)

Xem VT = A

\(\Rightarrow A=m^2+n^2+p^2-mn-np-mp\)

\(2A=\left(m-n\right)^2+\left(n-p\right)^2+\left(p-m\right)^2\)

\(=\left(a+b-b-c\right)^2+\left(b+c-c-a\right)^2+\left(c+a-a-b\right)^2\)

\(=\left(a-c\right)^2+\left(b-a\right)^2+\left(c-b\right)^2\)

\(=a^2-2ac+c^2+b^2-2ab+a^2+c^2-2bc+b^2\)

\(=2\left(a^2+b^2+c^2-2ab-2bc-2ac\right)\)

\(\Rightarrow A=a^2+b^2+c^2-ab-bc-ca\)(đpcm)

15 tháng 5 2017

a) Cho \(3x^2-4x=0\)

\(\Rightarrow3.x.x-4x=0\)

\(\Rightarrow x.\left(3x-4\right)\) = 0

\(\left[{}\begin{matrix}x=0\\3x-4=0\end{matrix}\right.\)

\(3x - 4 =0\)

\(\Rightarrow3x=4\)

\(\Rightarrow x=\dfrac{4}{3}\)

Vậy x= 0 hoặc x =\(\dfrac{4}{3}\)là nghiệm của đa thức \(3x^2-4x\)

b) Cho \(x+3x^2=0\)

\(\Rightarrow x+3.x.x=0\)

\(\Rightarrow x.\left(3x+1\right)=0\)

Suy ra x =0

hoặc \(3x+1=0\)

\(\Rightarrow\)3x=-1

x=\(\dfrac{-1}{3}\)

Vậy ...

15 tháng 5 2017

Bài 3: Tìm nghiệm các đa thức sau:

a. 3x2 - 4x

Gọi P(x) là đa thức 3x2 - 4x.

Cho P(x) = 0

=> 3x2 - 4x = 0

=> x (3x - 4)= 0

Suy ra:

TH1: x = 0

TH2: 3x - 4 = 0

_____3x___= 0 + 4

_____3x___= 4

______x___= \(\dfrac{4}{3}\)

Vậy x = \(\dfrac{4}{3}\) là nghiệm của đa thức 3x2 - 4x.

b. x + 3x2

Gọi Q(x) là đa thức x+3x2

Cho Q(x) = 0

=> x+3x2 = 0

=> x ( 3x) = 0

Suy ra:

TH1: x = 0

TH2: 3x = 0

=> x = 0.

Vậy x = 0 là nghiệm của đa thức x + 3x2 .

Chúc bn hx tốt!

4 tháng 11 2016

a ) \(A=\frac{ax^2\left(a-x\right)-a^2x\left(x-a\right)}{3a^2-3x^2}=\frac{ax\left(a-x\right)\left(a+x\right)}{3\left(a-x\right)\left(a+x\right)}=\frac{ax}{3}\)

Thay \(a=\frac{1}{2};x=-3\), ta có :

\(A=\frac{\frac{1}{2}.-3}{3}=-\frac{1}{2}\)

b ) \(B=\frac{\left(ab+bc+cd+da\right)abcd}{\left(c+d\right)\left(a+b\right)+\left(b-c\right)\left(a-d\right)}=\frac{\left[\left(ab+ad\right)+\left(bc+cd\right)\right]abcd}{ca+cb+da+db+ba-bd-ca+cd}\)

\(=\frac{\left[a\left(b+d\right)+c\left(b+d\right)\right]abcd}{ba+da+cb+cd}=\frac{\left(b+d\right)\left(a+c\right)abcd}{\left(b+d\right)\left(a+c\right)}=abcd\)

Thay \(a=-3;b=-4;c=2;d=3\), ta có :

\(B=\left(-3\right).\left(-4\right).2.3=72\)

 

19 tháng 9 2019

a) Biểu thức trên không có nghĩa khi \(\left(a-1\right)^2=0\)\(\Leftrightarrow a=1\)

b) Khi \(\orbr{\begin{cases}a-2=0\\b+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=2\\b=-5\end{cases}}\)

c) Khi \(a=0\)hoặc \(a=1\)hoặc \(b=0\)

d) Khi \(ab-a^2=0\)\(\Leftrightarrow a\left(b-a\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}a=0\\a=b\end{cases}}\)

26 tháng 5 2022

\(A=\dfrac{\left(a+b\right)\left(-x-y\right)-\left(a-y\right)\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{a\left(-x-y\right)+b\left(-x-y\right)-a\left(b-x\right)+y\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{-ax-ay-bx-by-ab+ax+by-xy}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{-ay-bx-ab-xy}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{-xy+ay+ab+by}{abxy\left(xy+ay+ab+by\right)}=\dfrac{-1}{abxy}\)

Với \(a=\dfrac{1}{3};b=-2;x=\dfrac{3}{2};y=1\)

\(\Rightarrow A=\dfrac{-1}{\dfrac{1}{3}.\left(-2\right).\dfrac{3}{2}.1}=-1\)

NV
9 tháng 1

Ta có:

\(a+b+c-abc=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+c\left(a+b\right)\right)-abc\)

\(=\left(a+b\right)ab+\left(a+b\right)^2c+abc+c^2\left(a+b\right)-abc\)

\(=\left(a+b\right)\left(ab+c^2+c\left(a+b\right)\right)\)

\(=\left(a+b\right)\left(ab+ac+c^2+bc\right)\)

\(=\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)

\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

Đồng thời:

\(a^2+1=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)

Tương tự:

\(b^2+1=\left(a+b\right)\left(b+c\right)\)

\(c^2+1=\left(a+c\right)\left(b+c\right)\)

Từ đó:

\(P=\dfrac{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)}\)

\(=\dfrac{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}=1\)