\(\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2-\left(a+b\right)\left(b+c\right)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(\hept{\begin{cases}a+b=m\\b+c=n\\c+a=p\end{cases}}\)

Xem VT = A

\(\Rightarrow A=m^2+n^2+p^2-mn-np-mp\)

\(2A=\left(m-n\right)^2+\left(n-p\right)^2+\left(p-m\right)^2\)

\(=\left(a+b-b-c\right)^2+\left(b+c-c-a\right)^2+\left(c+a-a-b\right)^2\)

\(=\left(a-c\right)^2+\left(b-a\right)^2+\left(c-b\right)^2\)

\(=a^2-2ac+c^2+b^2-2ab+a^2+c^2-2bc+b^2\)

\(=2\left(a^2+b^2+c^2-2ab-2bc-2ac\right)\)

\(\Rightarrow A=a^2+b^2+c^2-ab-bc-ca\)(đpcm)

18 tháng 10 2018

bạn chữa đi bạn

Cái này lên lớp 8 mới hok nhưng bạn chịu khó hiểu nha :

 \(\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)

Ta thấy dấu - vs dấu + triệt tiêu nha còn :

\(=a^3+b^3\)

Thế là xong 

Ủng hộ mik nha 

Thnaks

1 tháng 7 2016

k còn cách khác s

25 tháng 3 2020

Ta có: VP = \(a\left(b^2-2bc+c^2\right)+b\left(c^2-2ac+a^2\right)+c\left(a^2-2ab+b^2\right)\)

\(ab^2+ac^2+bc^2+ba^2+ca^2+cb^2-6abc\)(1) 

\(VT=\left(ab+b^2+ac+bc\right)\left(c+a\right)-8abc\)

\(=abc+b^2c+ac^2+bc^2+a^2b+b^2a+a^2c+abc-8abc\)

\(ab^2+ac^2+bc^2+ba^2+ca^2+cb^2-6abc\)(2)

Từ (1) ; (2) => VT = VP 

Vậy đẳng thức luôn đúng.

1 tháng 4 2019

Ta có:\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{a-c}{\left(a-b\right)\left(a-c\right)}-\frac{a-b}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}-\frac{1}{a-c}=\frac{1}{a-b}+\frac{1}{c-a}\left(1\right)\)Chứng minh tương tự,ta có:\(\hept{\begin{cases}\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}+\frac{1}{a-b}\left(2\right)\\\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{b-c}\left(3\right)\end{cases}}\)

Từ (1);(2);(3) suy ra:\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\)

\(=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^{đpcm}\)