K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2018

tính a,b,c hả bạn

25 tháng 7 2023

Ta đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\) 

=> \(a=bk\) 

       \(c=dk\) 

Ta có: 

\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\left(\dfrac{b\left(k+1\right)}{d\left(k+1\right)}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2\times k^2+b^2}{d^2\times k^2+d^2}=\dfrac{b^2\times\left(k^2+1\right)}{d^2\times\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)

=> \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\) 

=> đpcm

25 tháng 7 2023

Cảm ơn bạn nha. Mình tick đúng cho bạn rồi đó.

Đặt \(\hept{\begin{cases}a+b=m\\b+c=n\\c+a=p\end{cases}}\)

Xem VT = A

\(\Rightarrow A=m^2+n^2+p^2-mn-np-mp\)

\(2A=\left(m-n\right)^2+\left(n-p\right)^2+\left(p-m\right)^2\)

\(=\left(a+b-b-c\right)^2+\left(b+c-c-a\right)^2+\left(c+a-a-b\right)^2\)

\(=\left(a-c\right)^2+\left(b-a\right)^2+\left(c-b\right)^2\)

\(=a^2-2ac+c^2+b^2-2ab+a^2+c^2-2bc+b^2\)

\(=2\left(a^2+b^2+c^2-2ab-2bc-2ac\right)\)

\(\Rightarrow A=a^2+b^2+c^2-ab-bc-ca\)(đpcm)

Mình chưa học lớp 7

Mình mới học lớp 5 thôi

Xin lỗi nha

30 tháng 1 2017

to cung vay

29 tháng 10 2016

Ta có:

a2(b + c) + b2(a + c) + c2(a + b)

= a2b + a2c + b2a + b2c + c2a + c2b

= (a2b + b2a) + (a2c + c2a) + (b2c + c2b)

= ab(a + b) + ac(a + c) + bc(b + c)

= ab(a + b + c) + ac(a + b + c) + bc(a + b + c) - abc - abc - abc

= (a + b + c)(ab + ac + bc) - 3abc

Do \(a+b+c⋮6\Rightarrow\left(a+b+c\right)\left(ab+ac+bc\right)⋮6\) (1)

Do a + b + c chia hết cho 6 nên trong 3 số này tồn tại ít nhất 1 số chẵn

\(\Rightarrow3abc⋮6\) (2)

Từ (1) và (2) => a2(b + c) + b2(a + c) + c2(a + b) \(⋮6\left(đpcm\right)\)

29 tháng 10 2016

bái phục chị luôn

25 tháng 1 2019

Ta có : \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{a-c}{\left(a-b\right)\left(a-c\right)}-\frac{a-b}{\left(a-b\right)\left(a-c\right)}\)

\(=\frac{1}{a-b}-\frac{1}{a-c}=\frac{1}{a-b}+\frac{1}{c-a}\left(1\right)\)

Tương tự ta cũng chứng minh được :

\(\hept{\begin{cases}\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}+\frac{1}{a-b}\left(2\right)\\\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{b-c}\left(3\right)\end{cases}}\)

Từ (1), (2), (3), suy ra : \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\)

\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\left(đpcm\right)\)

25 tháng 1 2019

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{c-a+a-b}{\left(a-b\right)\left(c-a\right)}\)=\(\frac{1}{a-b}+\frac{1}{c-a}\)

Tuong tu => DPCM

25 tháng 6 2016

a,Áp dụng công thức \(\left|f\left(x\right)\right|\)<a <=>-a<f(x)<a

Ta có \(\left|5x-3\right|< 2\) <=>-2<5x-3<2

    <=>  -1<5x<5 <=> \(\frac{-1}{5}\) <x<1 (không thỏa mãn điều kiện x là số nguyên)

Vậy không có giá trị x thỏa mãn đề bài

b,Áp dụng công thức \(\left|f\left(x\right)\right|>a< =>\left[\begin{array}{nghiempt}f\left(x\right)>a\\f\left(x\right)< -a\end{array}\right.\)

Ta có \(\left|3x+1\right|>4< =>\left[\begin{array}{nghiempt}3x+1>4\\3x+1< -4\end{array}\right.\)

   <=>\(\left[\begin{array}{nghiempt}3x>3\\3x< -5\end{array}\right.\) <=>\(\left[\begin{array}{nghiempt}x>1\\x< -\frac{5}{3}\end{array}\right.\) (thỏa mãn điều kiện)

Vậy x>1 hoặc x<\(-\frac{5}{3}\)

c,Ta có \(\left|4-x\right|\)=4-x khi 4-x\(\ge\)0 <=>x\(\le\)

            \(\left|4-x\right|\)=-(4-x)=x-4 khi 4-x<0<=>x>4

Với x\(\le\)4 thì 4-x+2x=3

            <=> x=-1(x thuộc khoảng đang xét)

Với x>4 thì x-4+2x=3

           <=>3x=7

          <=>x=\(\frac{7}{3}\)(x không thuộc khoảng đang xét)

Vậy x=-1

24 tháng 6 2016

a, | 5x - 3 | < 2

<=> -2 < 5x - 3 < 2

<=> 0,2 < x < 1

Vì x là số nguyên nên không có giá trị x thỏa mãn