Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, TH1: x = 1 => n4 + 4 = 5 là số nguyên tố
TH2: x >= 2 => n4 \(\equiv\)1 (mod 5)
=> n4 + 4 \(⋮\)5 (ko là số nguyên tố)
\(\left\{{}\begin{matrix}a\left(a+b+c\right)=12\\b\left(a+b+c\right)=18\\c\left(a+b+c\right)=30\end{matrix}\right.\)
\(\Rightarrow a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=12+18+30\)
\(\Rightarrow\left(a+b+c\right)\left(a+b+c\right)=60\)
\(\Rightarrow\left(a+b+c\right)^2=60\)
\(\Rightarrow a+b+c=\pm\sqrt{60}\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=\sqrt{60}:12=\dfrac{\sqrt{15}}{6}\\b=\sqrt{60}:18=\dfrac{\sqrt{15}}{9}\\c=\sqrt{60}:30=\dfrac{\sqrt{15}}{15}\end{matrix}\right.\\\left\{{}\begin{matrix}a=-\sqrt{60}:12=\dfrac{-\sqrt{15}}{6}\\b=-\sqrt{60}:18=\dfrac{-\sqrt{15}}{9}\\c=-\sqrt{60}:30=\dfrac{-\sqrt{15}}{15}\end{matrix}\right.\end{matrix}\right.\)
Các câu sau làm tương tự
b. \(ab=\dfrac{3}{5};bc=\dfrac{4}{5};ac=\dfrac{3}{4}\)
\(\Rightarrow ab\cdot bc\cdot ac=\dfrac{9}{25}\Rightarrow\left(abc\right)^2=\dfrac{9}{25}\Rightarrow abc=\pm\dfrac{3}{5}\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=\dfrac{3}{5}:bc=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\\b=\dfrac{3}{5}:ac=\dfrac{3}{5}:\dfrac{3}{4}=\dfrac{4}{5}\\c=\dfrac{3}{5}:ab=\dfrac{3}{5}:\dfrac{3}{5}=1\end{matrix}\right.\\\left\{{}\begin{matrix}a=-\dfrac{3}{5}:\dfrac{4}{5}=-\dfrac{3}{4}\\b=-\dfrac{3}{5}:\dfrac{3}{4}=-\dfrac{4}{5}\\c=-\dfrac{3}{5}:\dfrac{3}{5}=-1\end{matrix}\right.\end{matrix}\right.\)
Vậy......................
(x2 - x + 1)2 - 5x(x2 - x + 1) + 4x2
Đặt x2 - x + 1 = a
<=> a2 - 5xa + 4x2 = x2 - 4xa - xa + 4x2
= a(a - 4x) - x(a - 4x) = (a - x)(a - 4x)
= (x2 - x + 1 - x)(x2 - x + 1 - 4x)
= (x2 - 2x + 1)(x2 - 5x + 1) = (x - 1)2(x2 - 5x + 1)
Đặt x2 - x + 1 = y
đthức <=> y2 - 5xy + 4x2
= y2 - xy - 4xy + 4x2
= y( y - x ) - 4x( y - x )
= ( y - x )( y - 4x )
= ( x2 - x + 1 - x )( x2 - x + 1 - 4x )
= ( x2 - 2x + 1 )( x2 - 5x + 1 )
= ( x - 1 )2( x2 - 5x + 1 )
a) 6-3a-2b+ab = (6-3a) + (-2b+ab) =3(2-a) -b(2-a) = (2-a)(3-b)
b) (2a -3) (1+a) - (1-a) (3+2a) = 2a+2a^2 -3 -3a +3a +2a^2 -3 -2a = 4a^2 -6 = 2(2a^2-3)
Ta có
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\frac{2a+2b+2c}{a+b+c}\)
\(=2\)
Từ \(\frac{2b+c-a}{a}=2\Rightarrow2a=2b+c-a\Rightarrow3a-2b=c\)và \(3a-c=2b\)
Tương tự có \(3b-2c=a;3b-a=2c\) và \(3c-2a=b;3c-b=2a\)
Thay vào biểu thức M ta có
\(M=\frac{a\cdot b\cdot c}{2\cdot b\cdot2\cdot a\cdot2\cdot c}=\frac{1}{8}\)
\(\left(a^2+4b^2-5\right)^2-16\left(ab+1\right)^2\)
\(=\left(a^2+4b^2-5\right)^2-4^2\left(ab+1\right)^2\)
\(=\left(a^2+4b^2-5\right)^2-\left[4\left(ab+1\right)\right]^2\)
\(=\left(a^2+4b^2-5\right)^2-\left[4ab+4\right]^2\)
\(=\left(a^2+4b^2-5-4ab-4\right)\left(a^2+4b^2-5+4ab+4\right)\)
\(=\left(a^2+4b^2-4ab-9\right)\left(a^2+4b^2+4ab-1\right)\)
\(\left(a^2+4b^2-5\right)^2-16\left(ab+1\right)^2\)
= \(\left(a^2+4b^2-5\right)^2-\left[4\left(ab+1\right)\right]^2\)
= \(\left(a^2+4b^2-5\right)^2-\left(4ab+4\right)^2\)
= \(\left(a^2+4b^2-5-4ab-4\right)\left(a^2+4b^2-5+4ab+4\right)\)
= \(\left(a^2+4b^2-4ab-9\right)\left(a^2+4b^2+4ab-1\right)\)
= \(\left[\left(a-2b\right)^2-3^2\right]\left[\left(a+2b\right)^2-1^2\right]\)
= \(\left(a-2b-3\right)\left(a-2b+3\right)\left(a+2b-1\right)\left(a+2b+1\right)\)