Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\dfrac{1}{3a-2}\sqrt{\left(4-12a+9a^2\right)49a^2}=\dfrac{1}{3a-2}\sqrt{\left(2-3a\right)^249a^2}\)
\(A=7a\)
\(B=\sqrt{16a^4}+6a^2=4a^2+6a^2=10a^2\)\(A=\sqrt{49a^2}+3a=7a+3a=10a\)
\(C=4x-\sqrt{\left(x^2-4x+4\right)}=4x-\sqrt{\left(x-2\right)^2}=4x-x+2=3x+2\)
\(E=\sqrt{y^2+6y+9}-\sqrt{y^2-6y+9}=\sqrt{\left(y+3\right)^2}-\sqrt{\left(y-3\right)^2}=\left|y+3\right|-\left|y-3\right|=y+3-y+3=6\)
\(D=\dfrac{a-b}{\sqrt{a}-\sqrt{b}}=\dfrac{\left(a-b\right)\cdot\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\cdot\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{a\sqrt{a}+a\sqrt{b}-b\sqrt{a}-b\sqrt{b}}{a-b}=\dfrac{\sqrt{a}\cdot\left(a-b\right)+\sqrt{b}\cdot\left(a-b\right)}{a-b}=\dfrac{\left(a-b\right)\cdot\left(\sqrt{a}+\sqrt{b}\right)}{a-b}=\sqrt{a}+\sqrt{b}\)
\(\sqrt{\left(2\sqrt{2}-3\right)^2}+2\sqrt{2}=\left|2\sqrt{2}-3\right|+2\sqrt{2}=3-2\sqrt{2}+2\sqrt{2}=3\)
\(\sqrt{\left(\sqrt{10}-3\right)^2}+\sqrt{\left(\sqrt{10}-4\right)^2}=\left|\sqrt{10}-3\right|+\left|\sqrt{10}-4\right|\)
\(=\sqrt{10}-3+4-\sqrt{10}=1\)
\(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}=\sqrt{\left(\sqrt{3}+2\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\left|\sqrt{3}+2\right|-\left|2-\sqrt{3}\right|=\sqrt{3}+2-2+\sqrt{3}=2\sqrt{3}\)
\(\sqrt{41-12\sqrt{5}}-\sqrt{41+12\sqrt{5}}=\sqrt{\left(6-\sqrt{5}\right)^2}-\sqrt{\left(6+\sqrt{5}\right)^2}\)
\(=6-\sqrt{5}-6-\sqrt{5}=-2\sqrt{5}\)
\(A=\sqrt{49a^2}+3a=7\left|a\right|+3a\)
Nếu \(a\ge0\)thì: \(A=7a+3a=10a\)
Nếu \(a< 0\)thì: \(A=-7a+3a=-4a\)
\(B=3\sqrt{9a^6}-6a^3=9\left|a^3\right|-6a^3\)
Nếu \(a\ge0\)thì: \(B=9a^3-6a^3=3a^3\)
Nếu \(a< 0\)thì: \(B=-9a^3-6a^3=-15a^3\)
a: \(=12\sqrt{80}=48\sqrt{5}\)
b: \(=2\sqrt{5}\cdot2\sqrt{3}-10=4\sqrt{15}-10\)
c: =20-9=11
\(A=\dfrac{x-2\sqrt{xy}+y+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ A=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}-\sqrt{x}+\sqrt{y}\\ A=\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}=2\sqrt{y}\)
Đề sai
\(A=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}+\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\)
\(=\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}\)
\(=2\sqrt{x}\)
\(=2\sqrt{3a}-5\sqrt{3a}+\dfrac{3}{2}\sqrt{3a}-10\sqrt{3a}\)
\(=-\dfrac{23}{2}\sqrt{3a}\)
\(a>0\)
\(\sqrt{49a^2}+3a=\left|7a\right|+3a=7a+3a=10a\)