Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,PT\Leftrightarrow\left|x+3\right|=3x-6\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-6\left(x\ge-3\right)\\x+3=6-3x\left(x< -3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\left(tm\right)\\x=\dfrac{3}{4}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{9}{2}\\ b,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\1-x=2x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(c,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=25x^2-20x+4\\ \Leftrightarrow25x^2-15x=0\\ \Leftrightarrow5x\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{3}{5}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\\ d,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow x\in\varnothing\)
a) \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x+3\right)\left(x-1\right)}=-\left(x+3+x-1-6\right)\)\(\left(Đk:x\ge1\right)\)
\(\left(\sqrt{x-1}+\sqrt{x+3}\right)^2+\sqrt{x-1}+\sqrt{x-3}-6=0\)
\(\left(\sqrt{x-1}+\sqrt{x+3}+3\right)\left(\sqrt{x-1}+\sqrt{x+3}-2\right)=0\)
Đến đây em xét các trường hợp rồi bình phương lên là được nha
b) \(\sqrt{3x-2}+\sqrt{x-1}=3x-2+x-1-6+2\sqrt{\left(3x-2\right)\left(x-1\right)}\left(Đk:x\ge1\right)\)
\(\left(\sqrt{3x-2}+\sqrt{x-1}\right)^2-\left(\sqrt{3x-2}+\sqrt{x-1}\right)-6=0\)
\(\left(\sqrt{3x-2}+\sqrt{x-1}-3\right)\left(\sqrt{3x-2}+\sqrt{x-1}+2\right)=0\)
Đến đây em xét các trường hợp rồi bình phương lên là được nha
a/ ĐKXĐ: $x\geq 1$
Đặt $\sqrt{x-1}=a; \sqrt{x+3}=b$ thì pt trở thành:
$a+b+2ab=6-(a^2+b^2)$
$\Leftrightarrow a^2+b^2+2ab+a+b-6=0$
$\Leftrightarrow (a+b)^2+(a+b)-6=0$
$\Leftrightarrow (a+b-2)(a+b+3)=0$
Hiển nhiên do $a\geq 0; b\geq 0$ nên $a+b+3>0$. Do đó $a+b-2=0$
$\Leftrightarrow a+b=2$
Mà $b^2-a^2=(x+3)-(x-1)=4$
$\Leftrightarrow (b-a)(b+a)=4\Leftrightarrow (b-a).2=4\Leftrightarrow b-a=2$
$\Rightarrow \sqrt{x+3}=b=(a+b+b-a):2=(2+2):2=2$
$\Leftrightarrow x=1$ (tm)
a. ĐKXĐ: $x\geq 2$ hoặc $x=1$
PT $\Leftrightarrow \sqrt{(x-1)(x-2)}=\sqrt{x-1}$
$\Leftrightarrow \sqrt{x-1}(\sqrt{x-2}-1)=0$
\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-1}=0\\ \sqrt{x-2}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1\\ x=3\end{matrix}\right.\) (đều thỏa mãn)
b.
PT $\Leftrightarrow \sqrt{(x-2)^2}=\sqrt{(2x-3)^2}$
$\Leftrightarrow |x-2|=|2x-3|$
\(\Leftrightarrow \left[\begin{matrix} x-2=2x-3\\ x-2=3-2x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1\\ x=\frac{5}{3}\end{matrix}\right.\)
c. ĐKXĐ: $x=2$ hoặc $x\geq 3$
PT $\Leftrightarrow \sqrt{(x-2)(x-3)}=\sqrt{x-2}$
$\Leftrightarrow \sqrt{x-2}(\sqrt{x-3}-1)=0$
\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x-3}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2\\ x=4\end{matrix}\right.\) (đều tm)
d.
PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$
$\Leftrightarrow |2x-1|=|x-3|$
\(\Leftrightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)
1. ĐK: \(x\ge1\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{3x-2}\ge0\\b=\sqrt{x-1}\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}ab=\sqrt{\left(3x-2\right)\left(x-1\right)}=\sqrt{3x^2-5x+2}\\a^2+b^2=\left(3x-2\right)+\left(x-1\right)=4x-3\end{matrix}\right.\)
pt trên được viết lại thành
\(a+b=a^2+b^2-6+2ab\)
\(\Leftrightarrow\left(a+b\right)^2-\left(a+b\right)-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=3\\a+b=-2\end{matrix}\right.\)
\(\Leftrightarrow a+b=3\) (vì \(a,b\ge0\))
\(\Rightarrow\sqrt{3x-2}+\sqrt{x-1}=3\)
Đến đây thì dễ rồi, bạn bình phương 2 lần để tìm x, sau đó đối chiếu với ĐK để loại nghiệm.
2. ĐK: \(-\sqrt{17}\le x\le\sqrt{17}\)
Đặt \(\left\{{}\begin{matrix}a=x\\b=\sqrt{17-x^2}\ge0\end{matrix}\right.\)
Ta lập được hệ phương trình
\(\left\{{}\begin{matrix}a+b+ab=9\\a^2+b^2=17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b+ab=9\\\left(a+b\right)^2-2ab=17\end{matrix}\right.\) (I)
Đặt S=x+y; P=xy thì
\(\left(I\right)\Rightarrow\left\{{}\begin{matrix}S+P=9\\S^2-2P=17\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}S=5\\P=4\end{matrix}\right.\\\left\{{}\begin{matrix}S=-7\\P=16\end{matrix}\right.\end{matrix}\right.\)
Đến đây dễ rồi bạn làm tiếp nha
2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)
\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)
Vì \(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)
\(\Rightarrow x=3\)
vô đây Câu hỏi của Phan hữu Dũng - Toán lớp 9 - Học toán với OnlineMath
Cho mình copy nhé:
Đặt \(\sqrt{3x-2}=a;\sqrt{x-1}=b\left(a,b\ge0\right)\)
\(\Rightarrow\begin{cases}a^2=3x-2\\b^2=x-1\end{cases}\)\(\Rightarrow a^2+b^2=4x-3\)
\(pt\Leftrightarrow a+b=a^2+b^2-6+2ab\)
\(\Leftrightarrow a^2+b^2-6+2ab-a-b=0\)
\(\Leftrightarrow\left(a+b\right)^2-\left(a+b\right)-6=0\)
\(\Leftrightarrow\left(a+b\right)^2+2\left(a+b\right)-3\left(a+b\right)-6=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+b+2\right)-3\left(a+b+2\right)=0\)
\(\Leftrightarrow\left(a+b-3\right)\left(a+b+2\right)=0\)
\(\Leftrightarrow a+b=3\)hoặc\(a+b=-2\)(loại,vì a\(\ge\)0;b\(\ge\)0 =>a+b\(\ge\)0)
- Với a+b=3
\(\Rightarrow\sqrt{3x-2}+\sqrt{x-1}=3\)
\(\Leftrightarrow\sqrt{3x-2}=3-\sqrt{x-1}\)
\(\Rightarrow3x-2=9+x-1-6\sqrt{x-1}\)
\(\Rightarrow2x-10=-6\sqrt{x-1}\)
\(\Rightarrow4x^2-40x+100=36\left(x-1\right)\)
\(\Rightarrow4x^2-76x+1236=0\)
\(\Rightarrow4x^2-8x-68x+136=0\)
\(\Rightarrow4x\left(x-2\right)-68\left(x-2\right)=0\)
\(\Rightarrow\left(4x-68\right)\left(x-2\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=17\left(loai\right)\\x=2\left(TM\right)\end{array}\right.\)
Vậy phương trình đã cho có nghiệm là x=2