K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

Ta có x=\(\frac{30-2\sqrt{45}}{4}< \frac{30-2\sqrt{49}}{4}\)

  \(\Leftrightarrow x=\frac{30-2\sqrt{45}}{4}< \frac{30-14}{4}< 4\)

Ta có x<4       (1)

lại có y=\(\sqrt{17}>\sqrt{16}\Rightarrow\sqrt{17}>4\)

=> y>4          (2)

từ (1) và (2) =>x<y

20 tháng 7 2018

Ta có : x = \(\frac{30-2\sqrt{45}}{4}\)\(\frac{15-\sqrt{45}}{2}\)> 0

           y = \(\sqrt{17}>0\)

\(\Rightarrow\)\(x^2\)\(\frac{\left(15-\sqrt{45}\right)^2}{4}\)\(\frac{225-30\sqrt{45}+45}{4}\)\(\frac{270-30\sqrt{45}}{4}\)

        \(y^2\)= 17

Xét hiệu : \(x^2-y^2\)\(\frac{270-30\sqrt{45}}{4}\)\(-\)17 = \(\frac{202-30\sqrt{45}}{4}\)\(\frac{\sqrt{40804}-\sqrt{40500}}{4}>0\)

              ( vì 40804\(>\)40500 \(\ge\)0 )

\(\Rightarrow\)\(x^2>y^2\)\(\Rightarrow\)\(x>y\) ( vì \(x,y>0\))

24 tháng 7 2017

Giả sử

\(\frac{30-2\sqrt{45}}{4}>\sqrt{17}\)

\(\Leftrightarrow15>2\sqrt{17}+\sqrt{45}\)

\(\Leftrightarrow225>113+4\sqrt{765}\)

\(\Leftrightarrow28>\sqrt{765}\)

\(\Leftrightarrow784>765\) (đúng)

Vậy \(\frac{30-2\sqrt{45}}{4}>\sqrt{17}\)

18 tháng 7 2018

Giả sử:

\(\frac{30-2\sqrt{45}}{4}>\sqrt{17}\)

\(\Leftrightarrow15>2\sqrt{17}+\sqrt{45}\)

\(\Leftrightarrow225>113+4\sqrt{765}\)

\(\Leftrightarrow28>\sqrt{765}\)

\(\Leftrightarrow784>765\)(đúng)

Vậy \(\frac{30-2\sqrt{45}}{4}>\sqrt{17}\)

27 tháng 8 2020

1)  \(A^2=2+2.\frac{\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}}{2}\)

              \(2+\sqrt{64-15}=2+\sqrt{49}=2+7=9\) mà A>0

=> A=3

28 tháng 8 2020

2) \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\)

 \(A=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

​​\(A=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

\(A^2=\left(4+\sqrt{15}\right)\left(16-4\sqrt{15}\right)\)

       \(=4\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=4\)

Mà A >0 

=> A=2

Mà 4>3

=> \(\sqrt{4}=2>\sqrt{3}\)

=> \(A>\sqrt{3}\)

27 tháng 8 2017

cái đầu tiên lớn hơn

cái sau be hon

27 tháng 8 2017

CÁI ĐẦU TIÊN LỚN HƠN CÁI THỨ 2

                  DỄ THẾ

16 tháng 6 2017

a/ \(\sqrt{17}+\sqrt{5}+1>\sqrt{16}+\sqrt{4}+1=4+2+1=7\)

\(\sqrt{45}< \sqrt{49}=7\)

\(\Rightarrow\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)

b/ Ta có:

\(\sqrt{n}< \sqrt{n+1}\)

\(\Rightarrow2\sqrt{n}< \sqrt{n+1}+\sqrt{n}\)

\(\Rightarrow\dfrac{1}{\sqrt{n}}>\dfrac{2}{\sqrt{n+1}+\sqrt{n}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)

Áp dụng vào bài toán được

\(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{36}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{37}-\sqrt{36}\right)\)

\(=2\left(\sqrt{37}-1\right)>6\)