Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(9^3\cdot3^2\)
\(=\left(3^2\right)^3\cdot3^2\)
\(=3^6\cdot3^2\)
\(=3^8\)
b) \(x^7\cdot x:x^4\)
\(=x^8:x^4\)
\(=x^4\)
c) \(7\cdot3^9+3^{10}+51\cdot3^8\)
\(=3^8\cdot\left(7\cdot3+3^2+51\right)\)
\(=3^8\cdot81\)
\(=3^8\cdot3^4\)
\(=3^{12}\)
d) \(5^{15}\cdot125^3\cdot625\)
\(=5^{15}\cdot5^9\cdot5^4\)
\(=5^{28}\)
ta có 50^40>50^39
50^39>50^38=)1/50^39<1/50^38
=)50^40+1/50^39>50^39+1/50^38
=)50^40+1/50^39+1>50^39+1/50^38+1
=)A>B
Ta có: \(\dfrac{1}{4}=\dfrac{10}{40}=\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}\)
Mà \(\dfrac{1}{31}>\dfrac{1}{40}\)
\(\dfrac{1}{32}>\dfrac{1}{40}\)
\(\dfrac{1}{33}>\dfrac{1}{40}\)
\(\dfrac{1}{34}>\dfrac{1}{40}\)
\(\dfrac{1}{35}>\dfrac{1}{40}\)
\(\dfrac{1}{36}>\dfrac{1}{40}\)
\(\dfrac{1}{37}>\dfrac{1}{40}\)
\(\dfrac{1}{38}>\dfrac{1}{40}\)
\(\dfrac{1}{39}>\dfrac{1}{40}\)
\(\Rightarrow\) \(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{39}+\dfrac{1}{40}>\dfrac{10}{40}=\dfrac{1}{4}\)
Vậy \(S>\dfrac{1}{4}\)
Ta có :M=\(\frac{2012^{37}+37^{2012}+1}{2012^{38}}\)=\(\frac{1}{2012}\)+\(\frac{37^{2012}}{2018^{38}}\)+\(\frac{1}{2012^{38}}\)
N=\(\frac{2012^{38}+37^{2012}+2}{2012^{39}}\)=\(\frac{1}{2012}\)+\(\frac{37^{2012}}{2012^{39}}\)+\(\frac{2}{2012^{39}}\)
Suy ra: M-N=\(\frac{37^{2012}}{2012^{38}}\left(1-\frac{1}{2012}\right)\)+\(\frac{1}{2012^{38}}\left(1-\frac{2}{2012}\right)\)
\(\Rightarrow\)M-N=\(\frac{37^{2012}}{2012^{38}}.\frac{2011}{2012}+\frac{1}{2012^{38}}.\frac{2010}{2012}\)
\(\Rightarrow\)M-N>0
\(\Rightarrow\)M>N
Vậy M>N
Ta có:
\(\frac{1}{3}\)A = \(\frac{3^{10}+1}{3^{10}+3}\)
= \(\frac{3^{10}+1}{3^{10}+1+2}\)
= \(1+\frac{3^{10}+1}{2}\)
\(\frac{1}{3}\)B = \(\frac{3^9+1}{3^9+3}\)
= \(\frac{3^9+1}{3^9+1+2}\)
= 1 + \(\frac{3^9+1}{2}\)
Đương nhiên \(1+\frac{3^{10}+1}{2}\) > 1 + \(\frac{3^9+1}{2}\)
=> A > B