Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 199^20=1568239201^5
2003^15=8036054027^5
=>199^20<2003^15
b: 3^99=27^33>27^21=11^21
Lời giải:
a.
$199^{20}<200^{20}=(2.100)^{20}=2^{20}.10^{40}=(2^{10})^2.10^{40}< (10^4)^2.10^{40}=10^8.10^{40}=10^{48}$
$2003^{15}> 2000^{15}=(2.10^3)^{15}=2^{15}.10^{45}> 2^{10}.10^{45}> 10^3.10^{45}=10^{48}$
$\Rightarrow 199^{20}< 2003^{15}$
b.
$3^{99}=(3^9)^{11}=19683^{11}$
$11^{21}< 11^{22}=(11^2)^{11}=121^{11}$
Hiển nhiên $19683^{11}> 121^{11}$
$\Rightarrow 3^{99}> 121^{11}> 11^{21}$
Gọi d là ƯCLN (20.n + 9 ; 30.n + 13). Ta có :
20.n + 9 chia hết cho d
30.n + 13 chia hết cho d
==> 60.n + 27 chia hết cho d
60.n + 26 chia hết cho d
==> 60.n + 27 - (60.n + 26) chia hết cho d
==> 27 - 26 chia hết cho d
==> 1 chia hết cho d ==> d = 1. ƯCLN (20.n + 9 ; 30.n + 13) = 1.
Vậy 20.n + 9 và 30.n + 13 là hai số nguyên tố cùng nhau.
Gọi d là ƯCLN (20.n + 9 ; 30.n + 13). Ta có :
20.n + 9 chia hết cho d
30.n + 13 chia hết cho d
==> 60.n + 27 chia hết cho d
60.n + 26 chia hết cho d
==> 60.n + 27 - (60.n + 26) chia hết cho d
==> 27 - 26 chia hết cho d
==> 1 chia hết cho d ==> d = 1. ƯCLN (20.n + 9 ; 30.n + 13) = 1.
Vậy 20.n + 9 và 30.n + 13 là hai số nguyên tố cùng nhau.
Vì n không chia hết cho 3 => n2 không chia hết cho 3
Xét 3 số tự nhiên liên tiếp: n2 - 1;n2; n2 + 1
Vì n2 không chia hết cho 3 => 1 trong 2 số n2 - 1 và n2 + 1 chia hết cho 3 => 1 trong 2 số đó có 1 số là hợp số
Vậy n2 - 1 và n2 + 1 không đồng thời là số nguyên tố
a) x lớn hơn 120
b) x=8
2) a) 2002/2001 lớn hơn
b) 2015/2018 lớn hơn
c) 27/37 lớn hơn
Đúng thì like giúp mik nha. Thx bạn
(n+5)/(n+1)=[(n+1) +4]/(n+1)
=1 +4/(n+1)
chia hết khi VP là số tự nhiên
---> 4/(n+1) là số tự nhiên
--> n+1 bằng 1,2,4
---> n bằng 0, 1 , 3
và ngược lại
n-1 chia hêt cho n+5
=>n+5-6 chia hết cho n+5
=>6 chia hết cho n+5
=>n+5 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n thuộc{-6;-4;-7;-3;-11;1}
n + 5 chia hết cho n - 1
=>n-1+6 chia hết cho n-1
=>6 chia hết cho n-1
=>n-1 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n thuộc {0;2;-1;3;-2;4;-5;7}