Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x hả bạn ?
a ) \(\left(3x+\frac{1}{4}\right)^3=-27\)
\(\left(3x+\frac{1}{4}\right)^3=\left(-3\right)^3\)
\(\Rightarrow3x+\frac{1}{4}=-3\)
\(\Rightarrow3x=-3-\frac{1}{4}=-\frac{13}{4}\)
\(\Rightarrow x=-\frac{13}{4}:3=-\frac{13}{12}\)
Vậy x = \(-\frac{13}{12}\)
cho em hoi câu này xin các anh chị:
10mux x+4y = 2013
Vũ Hồng Linh bạn check lại bài đầu dùm =_="
\(\left[-\frac{1}{3}\right]^3\cdot x=\frac{1}{81}\)
\(\Leftrightarrow x=\frac{1}{81}:\left[-\frac{1}{3}\right]^3\)
\(\Leftrightarrow x=\frac{1}{81}:\left[-\frac{1}{27}\right]\)
\(\Leftrightarrow x=\frac{1}{81}\cdot(-27)=-\frac{1}{3}\)
\(\left[x-\frac{1}{2}\right]^3=\frac{1}{27}\)
\(\Leftrightarrow\left[x-\frac{1}{2}\right]^3=\left[\frac{1}{3}\right]^3\)
=> Làm nốt
Mấy bài kia cũng làm tương tự
(- \(\dfrac{1}{3}\))3.\(x\) = \(\dfrac{1}{81}\)
\(x=\dfrac{1}{81}\) : (- \(\dfrac{1}{3}\))3
\(x\) = - (\(\dfrac{1}{3}\))4 :(\(\dfrac{1}{3}\))3
\(x=-\dfrac{1}{3}\)
Vậy \(x=-\dfrac{1}{3}\)
a) Ta có :
\(27^{27}>27^{26}=\left(27^2\right)^{13}=729^{13}>243^{13}\)
\(\Rightarrow27^{27}>243^{13}\)
\(\Rightarrow-27^{27}< -243^{13}\)
\(\Rightarrow\left(-27\right)^{27}< \left(-243\right)^{13}\)
b) \(\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{8}\right)^{26}=\left(\dfrac{1}{8^2}\right)^{13}=\left(\dfrac{1}{64}\right)^{13}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(-\dfrac{1}{8}\right)^{25}< \left(-\dfrac{1}{128}\right)^{13}\)
c) \(4^{50}=\left(4^5\right)^{10}=1024^{10}\)
\(8^{30}=\left(8^3\right)^{10}=512^{10}< 1024^{10}\)
\(\Rightarrow4^{50}>8^{30}\)
d) \(\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{9}\right)^{12}< \left(\dfrac{1}{27}\right)^{12}\)
\(\Rightarrow\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{27}\right)^{12}\)
Xem cách làm câu (b);(c);(d)
Bạn tham khảo:
Câu hỏi của Nguyễn Ngọc Thảo My - Toán lớp 7 - Học toán với OnlineMath
các bạn giúp mik nha
Cho A bằng 5^2021+1 phần 5^2022+1 ; B bằng 5^2020+1 phần 5^2021+1. Hãy so sánh A và B
Có: \(^{9^{36}}\)=\(^{\left(3^2\right)^{36}}\)=\(3^{72}\)
\(27^{10}\)=\(\left(3^3\right)^{10}\)=\(3^{30}\)
Vì 3 mũ 72 > 3 mũ 30 suy ra 9 mũ 36 > 27 mũ 10
\(\left(\dfrac{1}{27}\right)^{10}=\dfrac{1}{27^{10}}=\dfrac{1}{\left(3^3\right)^{10}}=\dfrac{1}{3^{30}}\)
\(\left(\dfrac{1}{81}\right)^7=\dfrac{1}{81^7}=\dfrac{1}{\left(3^4\right)^7}=\dfrac{1}{3^{28}}\)
Do \(3^{30}>3^{28}\Leftrightarrow\dfrac{1}{3^{30}}< \dfrac{1}{3^{28}}\)
\(\Leftrightarrow\left(\dfrac{1}{27}\right)^{10}< \left(\dfrac{1}{81}\right)^7\)
Ta có:
\(\left(\dfrac{1}{27}\right)^{10}=\left(\dfrac{1}{3^3}\right)^{10}=\left(\dfrac{1}{3}\right)^{30}\)
\(\left(\dfrac{1}{81}\right)^7=\left(\dfrac{1}{3^5}\right)^7=\left(\dfrac{1}{3}\right)^{35}\)
Vì \(\left(\dfrac{1}{3}\right)^{35}>\left(\dfrac{1}{3}\right)^{30}\)
⇒\(\left(\dfrac{1}{27}\right)^{10}< \left(\dfrac{1}{81}\right)^7\)