Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+2+2^2+....+2^{50}\)
\(2S=2+2^2+2^3+....+2^{51}\)
\(2S-S=\left(2+2^2+2^3+...+2^{51}\right)-\left(1+2+2^2+...+2^{50}\right)\)
\(S=2^{51}-1\)
Vì \(2^{51}-1< 2^{51}\)
\(\Rightarrow S< 2^{51}\)
\(2S=2+2^2+.........+2^{51}\)
\(2S-S=\left(2+2^2+.......+2^{51}\right)-\left(1+2+.......+2^{50}\right)\)
\(\Rightarrow S=2^{51}-1< 2^{51}\)
Vậy S<251
\(A=1+2+2^2+2^3+...+2^{50}\)
\(2A=2+2^2+2^3+2^4+...+2^{51}\)
\(A=2A-A=2^{51}-1<2^{51}\)
a) có 231=2.230=2.810
321=3.320=3.910
vì 2.810 < 3.910 nên 231 < 321
b)
có S = 1 + 2 + ... + 250
<=> S = 20 + 21 + 22 + 23 + ... + 250
=> 2S = 2(20 + 21 + 22 + 23 + ... + 250) = 21 + 22 + 23 + ... + 251
=> 2S - S = 21 + 22 + 23 + ... + 251 - ( 20 + 21 + 22 + 23 + ... + 250)
=> S = 21 + 22 + 23 + ... + 251 - 20 - 21 - 22 - 23 - ... - 250
=> S = 251 - 20
=> S = 251 -1 < 251
=> S < 251
\(S=1+2+2^2+...........+2^{50}\)
\(\Leftrightarrow2S=2+2^2+...........+2^{50}+2^{51}\)
\(\Leftrightarrow2S-S=\left(2+2^2+.........+2^{51}\right)-\left(1+2+2^2+..........+2^{50}\right)\)
\(\Leftrightarrow S=2^{51}-1\)
\(\Leftrightarrow S< 2^{51}\)
\(A=1+2+2^2+2^3+...+2^{50}\)
\(2A=2+2^2+2^3+2^4+....+2^{51}\)
\(=>2A-A=\left(2+2^2+2^3+2^4+...+2^{51}\right)-\left(1+2+2^2+2^3+....+2^{50}\right)\)
\(=>A=2^{51}-1< 2^{51}=B=>A< B\)
S>251
2S=2(1+2+22+...+250)
2S=2+22+...+251
2S-S=(2+22+...+251)-(1+2+22+...+250)
S=251-1<251
=>S<251