K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2015

Ta có :\(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=\frac{a+b+c+d}{a+b+c+d}=1\)và \(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}<\frac{2a}{a+b+c+d}+\frac{2b}{a+b+c+d}+\frac{2c}{a+b+c+d}+\frac{2d}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)

3 tháng 11 2015

Đặt A=a/b+c+d + b/c+d+a +c/d+a+b +d/a+b+c

     4+A=a/b+c+d +1  + b/c+d+a  +1 + c/d+a+b  +1  + d/a+b+c  +1

     4+A=2a/a+b+c+d  +  2b/a+b+c+d  +  2c/a+b+c+d  +2d/a+b+c+d

     4+A=2a+2b+2c+2d/a+b+c+d

     4+A=2(a+b+c+d) /a+b+c+d

     4+A=2

       A=2-4= -2

=) A<1<2

     

7 tháng 6 2016

Lớp 6 mà có số hữu tỉ

8 tháng 6 2016

giải:

ad - bc = 1 nên ad lớn hơn ac 1 đơn vị

=> bc - ad = -1

so sánh: \(y\)\(t=\frac{a+m}{b+m}\)

ta so sánh: \(\frac{c}{d}\)\(\frac{a+m}{b-m}\)

ta xét hiệu của \(\left[c\left(b-m\right)\right]-\left[d\left(a+m\right)\right]\)

                       \(=\left(bc+cn\right)-\left(ad+md\right)\)

                       \(=bc+cn-ad-md\)

                       \(=\left(bc-ad\right)+\left(cn-md\right)\)

                       \(=-1+0\)

                       \(=-1\)

\(\Rightarrow\)\(c\left(b+n\right)< d\left(a+m\right)\)

\(\Rightarrow\)\(\frac{c}{d}< \frac{a+m}{b+n}\)

vậy \(y< t\)