Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=a-\left\{\left(a-3\right)-\left[\left(a-3\right)-\left(-a-2\right)\right]\right\}\\ =a-\left(a-3\right)+\left[\left(a-3\right)-\left(-a-2\right)\right]\\ =a-\left(a-3\right)+\left(a-3\right)-\left(-a-2\right)\\ =a-a+3+a-3+a+2\\ =\left(a-a+a+a\right)+\left(3-3+2\right)\\ =2a+2\)
\(Q=\left[a+\left(a+3\right)\right]-\left[\left(a+2\right)-\left(a-2\right)\right]\\ =a+\left(a+3\right)-\left(a+2\right)+\left(a-2\right)\\ =a+a+3-a-2+a-2\\ =\left(a+a-a+a\right)+\left(3-2-2\right)\\ =2a-1\)
Vì \(2a+2>2a-1\) nên \(P>Q\)
Vậy \(P>Q\)
toàn hỏi lung tung. lớp 6 mà còn ko biết làm mấy bài toán vớ vẩn kia
A(-1) (-2) (-3) . . . . ( -2009) <0
B(-1) (-2) (-3) . . . . (-10) =1.2.3.....10
Không làm các phép tính, hãy so sánh :
a) với
Đặt A= (−1)(−2)(−3)....(−2009)(−1)(−2)(−3)....(−2009)
Vì A chứa 2009 thừa số nên tích các thừa số trên sẽ là số âm nên a sẽ bé hơn 0
\(\Rightarrow A< 0\) hay (−1)(−2)(−3)....(−2009)(−1)(−2)(−3)....(−2009) < 0
b) với
Đặt B =(−1)(−2)(−3)....(−10)(−1)(−2)(−3)....(−10) = 1.2.3....10
Vì B chứa 10 số hạng nên tích sẽ là số nguyên dương nên sẽ bằng tích các số đối của từng thừa số trong tích nên \(\Rightarrow B=1\times2\times...\times10\)
a)Ta thấy:
\(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{x+a}{x\left(x+a\right)}-\dfrac{x}{x\left(x+a\right)}\)
\(=\dfrac{\left(x+a\right)-x}{x\left(x+a\right)}\)
\(=\dfrac{a}{x\left(x+a\right)}\)
\(\Rightarrowđpcm\)
b)Ta thấy:
\(\dfrac{1}{x\left(x+1\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)
\(=\dfrac{\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)^2\left(x+2\right)}-\dfrac{x\left(x+1\right)}{x\left(x+1\right)^2\left(x+2\right)}\)
\(=\dfrac{x+2}{x\left(x+1\right)\left(x+2\right)}-\dfrac{x}{x\left(x+1\right)\left(x+2\right)}\)
\(=\dfrac{\left(x+2\right)-x}{x\left(x+1\right)\left(x+2\right)}=\dfrac{2}{x\left(x+1\right)\left(x+2\right)}\Rightarrowđpcm\)
c)Ta thấy:
\(\dfrac{1}{x\left(x+1\right)\left(x+2\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+3\right)}{x\left(x+1\right)^2\left(x+2\right)^2\left(x+3\right)}-\dfrac{x\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)^2\left(x+2\right)^2\left(x+3\right)}=\dfrac{x+3}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}-\dfrac{x}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\dfrac{x+3-x}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\dfrac{3}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\Rightarrowđpcm\)
a/ \(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{a}{x\left(x+a\right)}\)
Ta có: \(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{x+a}{x\left(x+a\right)}-\dfrac{x}{x\left(x+a\right)}\)
\(=\dfrac{\left(x-x\right)+a}{x\left(x+a\right)}\) hay \(\dfrac{a}{x\left(x+a\right)}\)
\(\Rightarrow\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{a}{x\left(x+a\right)}\left(đpcm\right)\)