K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

toàn hỏi lung tung. lớp 6 mà còn ko biết làm mấy bài toán vớ vẩn kia

16 tháng 4 2017

Sách Giáo Khoa

So sánh:

a) (-7) . (-5) với 0; b) (-17) . 5 với (-5) . (-2);

c) (+19) . (+6) với (-17) . (-10).

Bài giải:

Thực hiện các phép tính rồi so sánh hai kết quả.

ĐS: a) (-7) . (-5) > 0 b) (-17) . 5 < (-5) . (-2);

c). (+19) . (+6) < (-17) . (-10).

16 tháng 4 2017

a) (-7) . (-5) > 0

b) (-17) . 5 < (-5) . (-2);

c). (+19) . (+6) < (-17) . (-10).

10 tháng 3 2023

\(D=\dfrac{\left(2!\right)^2}{1^2}+\dfrac{\left(2!\right)^2}{3^2}+\dfrac{\left(2!\right)^2}{5^2}+...+\dfrac{\left(2!\right)^2}{2015^2}\)

\(D=\left(2!\right)^2\left(\dfrac{1}{3^2}+\dfrac{1}{5^2}+...+\dfrac{1}{2015^2}\right)\)

Xét số hạng tổng quát dạng: \(\dfrac{1}{\left(2n+1\right)^2}\) với \(n\in N\ge1\)

Ta có: \(\left(2n+1\right)^2-2n\left(2n+1\right)=1>0\)

\(\Rightarrow\left(2n+1\right)^2>2n\left(2n+1\right)\Rightarrow\dfrac{1}{\left(2n+1\right)^2}< \dfrac{1}{2n\left(2n+1\right)}\)

Do đó: \(\left\{{}\begin{matrix}\dfrac{1}{3^2}< \dfrac{1}{2.4}\\\dfrac{1}{5^2}< \dfrac{1}{4.6}\\....\\\dfrac{1}{2015^2}< \dfrac{1}{2014.2016}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{5^2}...+\dfrac{1}{2015^2}< 1+\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{2014.2016}\)

\(\Leftrightarrow\dfrac{D}{\left(2!\right)^2}< 1+\dfrac{1}{2.4}+\dfrac{1}{4.6}+..+\dfrac{1}{2014.2016}\)

\(\Leftrightarrow D< 4\left(1+\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{2014.2016}\right)\)

\(\Leftrightarrow D< 4+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{1007.1008}\)

\(\Leftrightarrow D< 4+\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+...+\dfrac{1008-1007}{1007.1008}\)

\(\Leftrightarrow D< 4+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{...1}{1007}-\dfrac{1}{1008}\)

\(\Leftrightarrow D< 5-\dfrac{1}{1008}< 5< 6\)

 

12 tháng 3 2023

Cám ơn bạn :)

23 tháng 4 2017

\(D=2!^2\left(\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{2015^2}\right)\)

tổng trong ngoặc nhỏ hơn 1 nên D nhỏ hơn 4.1=4<6

Vậy Đ<6

20 tháng 5 2016

 Với n =1 thì A < 3. Vậy ta phải đi chứng minh A < 3

Giả sử A < 3 đúng với n = k. Ta có:

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(1+\frac{2}{k^2+3k}\right)< 3\)

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(\frac{k^2+3k+2}{k\left(k+3\right)}\right)\)

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}\)

Ta phải đi chứng minh A < 3 đúng với n = k +1 tức là phải chứng minh:

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\left(1+\frac{2}{\left(k+1\right)^2+3\left(k+1\right)}\right)\)  \(< 3+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}\)

Ta sẽ có:

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\left(1+\frac{2}{k^2+2k+1+3k+3}\right)\)

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\frac{k^2+5k+6}{k^2+5k+4}\)

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}\) \(< 3+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}\)

Vậy A đúng với n = k + 1 thì A đúng với n = k

Vậy A < 3 là điều phải chứng minh.

(Phương pháp quy nạp toán học)

a) Ta thấy: có 5 thừa số (-5) nên tích mang dấu "-" nên:

(-5).(-5).(-5).(-5).(-5) = -55

b) (-2).(-2).(-2).(-3).(-3).(-3)

= (-2).(-3).(-2).(-3).(-2).(-3)

=6.6.6 = 63

hoặc: ta thấy tích có 6 thừa số nguyên âm nên tích mang dấu "+"

(-2).(-2).(-2).(-3).(-3).(-3)

= 23.33

20 tháng 5 2016

 Với n =1 thì A < 3. Vậy ta phải đi chứng minh A < 3

Giả sử A < 3 đúng với n = k. Ta có:

$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(1+\frac{2}{k^2+3k}\right)<3$A=(1+12 )+(1+15 )+(1+19 )+...+(1+2k2+3k )<3

$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(\frac{k^2+3k+2}{k\left(k+3\right)}\right)$A=(1+12 )+(1+15 )+(1+19 )+...+(k2+3k+2k(k+3) )

$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}$A=(1+12 )+(1+15 )+(1+19 )+...+(k+1)(k+2)k(k+3) 

Ta phải đi chứng minh A < 3 đúng với n = k +1 tức là phải chứng minh:

$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\left(1+\frac{2}{\left(k+1\right)^2+3\left(k+1\right)}\right)$A=(1+12 )+(1+15 )+(1+19 )+...+(k+1)(k+2)k(k+3) +(1+2(k+1)2+3(k+1) )  $<3+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}$<3+(k+2)(k+3)(k+1)(k+4) 

Ta sẽ có:

$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\left(1+\frac{2}{k^2+2k+1+3k+3}\right)$A=(1+12 )+(1+15 )+(1+19 )+...+(k+1)(k+2)k(k+3) +(1+2k2+2k+1+3k+3 )

$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\frac{k^2+5k+6}{k^2+5k+4}$A=(1+12 )+(1+15 )+(1+19 )+...+(k+1)(k+2)k(k+3) +k2+5k+6k2+5k+4 

$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}$A=(1+12 )+(1+15 )+(1+19 )+...+(k+1)(k+2)k(k+3) +(k+2)(k+3)(k+1)(k+4)  $<3+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}$<3+(k+2)(k+3)(k+1)(k+4) 

Vậy A đúng với n = k + 1 thì A đúng với n = k

Vậy A < 3 là điều phải chứng minh.

(Phương pháp quy nạp toán học)

20 tháng 5 2016

 Với n =1 thì A < 3. Vậy ta phải đi chứng minh A < 3

Giả sử A < 3 đúng với n = k. Ta có:

$$

$$

$$

Ta phải đi chứng minh A < 3 đúng với n = k +1 tức là phải chứng minh:

$$  $$

Ta sẽ có:

$$

$$

$$ $$

Vậy A đúng với n = k + 1 thì A đúng với n = k

Vậy A < 3 là điều phải chứng minh.

(Phương pháp quy nạp toán học)

 Với n =1 thì A < 3. Vậy ta phải đi chứng minh A < 3

Giả sử A < 3 đúng với n = k. Ta có:

$$

$$

$$

Ta phải đi chứng minh A < 3 đúng với n = k +1 tức là phải chứng minh:

$$  $$

Ta sẽ có:

$$

$$

$$ $$

Vậy A đúng với n = k + 1 thì A đúng với n = k

Vậy A < 3 là điều phải chứng minh.

(Phương pháp quy nạp toán học)