Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(5^{300}=5^{3.100}=\left(5^3\right)^{100}=125^{100}\)
\(3^{500}=3^{5.100}=\left(3^5\right)^{100}=243^{100}\)
Vì 125 < 243 nên \(125^{100}< 243^{100}\)
Vậy \(5^{300}< 3^{500}\)
b) Ta có \(2^{15}=2^{13+2}=2^{13}.2^2=4.2^{13}\)
Vì 4<7 nên \(4.2^{13}< 7.2^{13}\)
Vậy \(2^{15}< 7.2^{13}\)
\(a)\)\(5^{300}=\left(5^3\right)^{100}=125^{100}\)
\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
Vì \(125^{100}< 243^{100}\) nên \(5^{300}< 3^{500}\)
Vậy \(5^{300}< 3^{500}\)
3^200 = (3^2)^100 = 9^100
2^300 = (2^3)^100 = 8^100
Vì 9^100 > 8^100
Vậy 3^200 > 2^300
a/
\(27^{81}=\left(3^3\right)^{81}=3^{241}\)
\(81^{27}=\left(3^4\right)^{27}=3^{108}\)
\(\Rightarrow27^{81}=3^{241}>3^{108}=81^{27}\)
b/
\(5^{60}=\left(5^3\right)^{20}=125^{20}\)
\(7^{40}=\left(7^2\right)^{20}=49^{20}\)
\(\Rightarrow5^{60}=125^{20}>49^{20}=7^{40}\)
c/
\(11^{102}=\left(11^2\right)^{51}=121^{51}>121^{50}>99^{50}\)
d. So sánh a=12^34567 với b=(12^5)^12=12^60 => a>b
so sánh b=(12^5)^12 với c=34567^12 => b>c
Vậy a>c.
a) 2x . 4 = 128
2x = 128 : 4
2x = 32
x = 32 : 2
x = 16
b)x . 17 = x
=> x = 0
\(3333^{4444}=\left(1111\right)^{3.4444}=1111^{13332}\)
\(4444^{3333}=1111^{4.3333}=1111^{13332}\)
Vậy = nhau
\(\dfrac{-11}{-32}>\dfrac{16}{49}\)
\(\dfrac{-2020}{-2021}>\dfrac{-2021}{2022}\)
a)2300=(23)100=8100
3200=(32)100=9100
vì 8<9 nên 8100<9100
hay 2300<3200
b)212=24.3=(24)3=163
418=42.9=(42)9=169
c)2300 = (23)100=8100
3200=(32)100=9100
Vì 100 = 100 và 9 > 8 => 9100>8100=>2300<3200.
Vậy 2300<3200.
b) 930 và 445
\(9^{30}=\left(9^2\right)^{15}=81^{15}\)
\(4^{45}=\left(4^3\right)^{15}=64^{15}\)
Vì : \(81^{15}>64^{15}\)nên \(9^{30}>4^{45}\)
c)2300 và 3200
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì : \(8^{100}< 9^{100}\)nên \(2^{300}< 3^{200}\)
Làm phần a và d tương tự EnderVN Superman