Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\frac{87}{39}>1\)
\(\frac{2015}{2017}< 1\)
\(\Rightarrow\frac{87}{39}>\frac{2015}{2017}\)
\(\frac{n}{n+1}\)và \(\frac{n+1}{n+3}\)
\(\Rightarrow\frac{n}{n+1}=\frac{n\cdot\left(n+3\right)}{\left(n+1\right)\left(n+3\right)}\)
\(\Rightarrow\frac{n+1}{n+3}=\frac{\left(n+1\right)^2}{\left(n+3\right)\left(n+1\right)}\)
\(\Rightarrow n\cdot\left(n+3\right)=n^2+3n\)
\(\Rightarrow\left(n+1\right)^2=n^2+2n+1\)
Dấu bằng chỉ xảy ra khi n = 1
Còn với mọi trường hợp n > 1 thì
\(\frac{n}{n+1}>\frac{n+1}{n+3};n^2+3n>n^2+2n+1\)
\(N=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}\)
\(N>\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{10.11}\)
\(N>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{11}=\frac{1}{2}-\frac{1}{11}=\frac{10}{22}>\frac{9}{22}\)
Vậy N > 9/22
theo bài cho ta suy ra : sau khi nối MN thì MN,AB,DC song song với nhau;vì M,N lần lượt là trung điểm của ED,EC nên EM=ED;EN=EC suy ra ABMN, MNCD là hình thang và chiều cao của 2 hình thang trên bằng nhau.vì ABCD là hình chữ nhật nên AB=CD.vì 2 hình thang ABMN, MNCD có chung đáy MN ; 2 đáy còn lại AB vàCD bằng nhau ; chiều cao của 2 hình thang cũng bằng nhau. áp dụng công thức tính hình thang nên diện tích ABMN=MNCD
Ta so sánh hai phân số \(A=\frac{n}{n+3}\) và \(B=\frac{n-1}{n+4}\)
Ta thấy \(A+1=\frac{n}{n+3}+1=\frac{n}{n+3}+\frac{n+3}{n+3}=\frac{n+n+3}{n+3}=\frac{2n+3}{n+3}\)\(B+1=\frac{n-1}{n+4}+1=\frac{n-1}{n+4}+\frac{n+4}{n+4}=\frac{n-1+n+4}{n+4}=\frac{2n+3}{n+4}\)
Ta thấy \(2n+3=2n+3;n+3< n+4\Rightarrow\frac{2n+3}{n+3}>\frac{2n+3}{n+4}\Rightarrow A+1>B+1\Rightarrow A>B\)
Vậy \(\frac{n}{n+3}>\frac{n-1}{n+4}.\)
a,bc.3=m2,bn
\(\frac{m2,bn}{3}=a,bc\)
m khong chia duoc cho 3=> m2 chia 3 =a
m khac 2 khac 0=> m=1=> a=4
b chia cho 3 =b => b=9 hoac 0
n chia cho 3=c vay n=3, 9 hoac 6 voi n=3=> c=1 (loai vi co m=1);
n=6 => c=2 (loai)
vay n=9=> c=3
KL
a=4; b=0; c=3; m=1; n=9
thu lai
4,03x3=12,09
Ta quy đồng hai phân số trên thì được
\(\frac{n^2+2n}{\left(n+1\right)\left(n+2\right)}=\frac{n^2+2n+1}{\left(n+1\right)\left(n+2\right)}\)
Vậy thì ta có n/n+1<n+1/n+2