Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
a = 1002.1001
a = 1002.( 1000 + 1 )
a = 1002.1000 + 1002
b = 1003.1000
b = ( 1002 + 1 ).1000
b = 1002.1000 + 1000
Vậy a = 1002.1000 + 1002
b = 1002.1000 + 1000
=> a > b
b) Ta có:
a = 2002.2002
a = 2002. ( 2000 + 2 )
a = 2002.2000 + 2002.2
a = 2002.2000 + 4004
b = 2000.2004
b = 2000. ( 2002 + 2 )
b = 2000.2002 + 2000.2
b = 2000.2002 + 4000
Vậy a = 2002.2000 + 4004
b = 2000.2002 + 4000
=> a > b
c) Ta có:
a = 2016.2016
a = 2016.( 2014 + 2 )
a = 2016.2014 + 2016.2
b = 2014.2015
b = 2014. ( 2016 - 1 )
b = 2014.2016 - 2014
Vậy a = 2016.2014 + 2016.2
b = 2014.2016 - 2014
=> a > b
A = 123 × 123
A = (121 + 2) × 123
A = 121 × 123 + 2 × 123
B = 121 × 124
B = 121 × (123 + 1)
B = 121 × 123 + 121
Vì 2 x 123 > 121
=> A > B
theo đề bài ta có:
A=123 * 123
A=123*(121+2)
A=123*121 +123*2
B=121*124
B=121*(123+1)
B=123*121+121*1
B=121*123+121
vì 123*2>121=>a>b
Lời giải:
a. $\frac{-10}{-11}=\frac{10}{11}>0 >\frac{5}{-8}$
b.
$\frac{99}{100}< 1< \frac{95}{94}$
\(2A=1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{2016}{2^{2015}}\)
\(2A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}-\frac{2016}{2^{2016}}\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}-\frac{1}{2^{2016}}< 1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)(1)
Ta có
\(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^{2014}}-\frac{1}{2^{2015}}\right)=1+\left(1-\frac{1}{2^{2015}}\right)\)
\(< 1+1=2\)(2)
Từ (1) và (2) ta có A<2
Vậy A<B
A=\(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+.........+\frac{2016}{2^{2016}}\\ 2A=1+\frac{2}{2}+\frac{3}{2^2}+........+\frac{2016}{2^{2015}}\\ 2A-A=\left(\frac{2}{2}-\frac{1}{2}\right)+\left(\frac{3}{2^2}-\frac{2}{2^2}\right)+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+.........\left(\frac{2016}{2^{2015}}-\frac{2015}{2^{2015}}\right)+\left(1-\frac{2016}{2^{2015}}\right)\\ A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2015}}+\left(1-\frac{2016}{2^{2015}}\right)\)
\(GọiC=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2015}}\\ 2C=1+\frac{1}{2}+\frac{1}{2^3}+......+\frac{1}{2^{2014}}\\ 2C-C=C=1-\frac{1}{2^{2015}}\)
Thay C vào A , ta có : A = 1 - 1/2^2015 + 1 - 1/2^2016 =2 - 1/2^2015 - 1/2^2016<2 =B->A<B
A=2009.2011
=2009.(2010+1)
=2009.2010+2009
B=20102
=2010.2010
=(2009+1).2010
=2009.2010+2010
Vì 2009.2010+2009 < 2009.2010+2010 nên 2009.2011 < 20102 hay A < B
Ta có A=2009.2011=(2010-1).(2010+1)=2010.2010+2010.1-2010.1-1.1=20102-1
Vì 20102-1<20102 nên A<B
\(A=\frac{2003\cdot2004-1}{2003\cdot2004}=1-\frac{1}{2003\cdot2004}\)
\(B=\frac{2004\cdot2005-1}{2004\cdot2005}=1-\frac{1}{2004\cdot2005}\)
Vì 1 = 1 và \(\frac{1}{2003\cdot2004}>\frac{1}{2004\cdot2005}\) nên A > B
Vậy A > B
Chắc sai =))
\(A=\frac{2003\cdot2004-1}{2003\cdot2004}=\frac{2003\cdot2004}{2003\cdot2004}-\frac{1}{2003\cdot2004}=1-\frac{1}{2003\cdot2004}\)
\(B=\frac{2004\cdot2005-1}{2004\cdot2005}=\frac{2004\cdot2005}{2004\cdot2005}-\frac{1}{2004\cdot2005}=1-\frac{1}{2004\cdot2005}\)
có : \(\frac{1}{2003\cdot2004}>\frac{1}{2004\cdot2005}\)
\(\Rightarrow1-\frac{1}{2003\cdot2004}< 1-\frac{1}{2004\cdot2005}\)
\(\Rightarrow A< B\)