K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

\(2A=1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{2016}{2^{2015}}\)

\(2A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}-\frac{2016}{2^{2016}}\)

\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}-\frac{1}{2^{2016}}< 1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)(1)

Ta có

\(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^{2014}}-\frac{1}{2^{2015}}\right)=1+\left(1-\frac{1}{2^{2015}}\right)\)

\(< 1+1=2\)(2)

Từ (1) và (2) ta có A<2

Vậy A<B

2 tháng 4 2017

A=\(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+.........+\frac{2016}{2^{2016}}\\ 2A=1+\frac{2}{2}+\frac{3}{2^2}+........+\frac{2016}{2^{2015}}\\ 2A-A=\left(\frac{2}{2}-\frac{1}{2}\right)+\left(\frac{3}{2^2}-\frac{2}{2^2}\right)+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+.........\left(\frac{2016}{2^{2015}}-\frac{2015}{2^{2015}}\right)+\left(1-\frac{2016}{2^{2015}}\right)\\ A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2015}}+\left(1-\frac{2016}{2^{2015}}\right)\)

\(GọiC=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2015}}\\ 2C=1+\frac{1}{2}+\frac{1}{2^3}+......+\frac{1}{2^{2014}}\\ 2C-C=C=1-\frac{1}{2^{2015}}\)

Thay C vào A , ta có : A = 1 - 1/2^2015 + 1 - 1/2^2016  =2 - 1/2^2015 - 1/2^2016<2  =B->A<B

23 tháng 4 2018

Mấy bài dạng này biết cách làm là oke 

Ta có : 

\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{\left(2016-1-1-...-1\right)+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{\frac{2017}{2017}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=2017\)

Vậy \(A=2017\)

Chúc bạn học tốt ~ 

23 tháng 4 2018

\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{2016+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

(số 2016 tách ra làm 2016 số 1 rồi cộng vào từng phân số, còn dư 1 số viết thành 2017/2017 nghe bạn!!! :)))

\(A=\frac{\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=2017\)

19 tháng 4 2017

Ta có :

\(A=\frac{2016^{2016}+2}{2016^{2016}-1}=\frac{\left(2016^{2016}-1\right)+3}{2016^{2016}-1}=1+\frac{3}{2016^{2016}-1}\)

\(B=\frac{2016^{2016}}{2016^{2016}-3}=\frac{\left(2016^{2016}-3\right)+3}{2016^{2016}-3}=1+\frac{3}{2016^{2016}-3}\)

Vì \(2016^{2016}-1>2016^{2016}-3\) nên \(\frac{3}{2016^{2016}-1}< \frac{3}{2016^{2016}-3}\)

\(\Rightarrow1+\frac{3}{2016^{2016}-1}< 1+\frac{3}{2016^{2016}-3}\)

\(\Rightarrow A< B\)

24 tháng 4 2017

a/ Ta có

\(200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)\)

\(=1+2\left(1-\frac{1}{3}\right)+2\left(1-\frac{1}{4}\right)+...+2\left(1-\frac{1}{100}\right)\)

\(=1+2\left(\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\right)\)

\(=2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)

Thế lại bài toán ta được:

\(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)

\(=\frac{2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}=2\)

24 tháng 4 2017

b/ Ta có: 

A - B\(=\frac{-21}{10^{2016}}+\frac{12}{10^{2016}}+\frac{21}{10^{2017}}-\frac{12}{10^{2017}}\)

\(=\frac{9}{10^{2017}}-\frac{9}{10^{2016}}< 0\)

Vậy A < B

25 tháng 4 2017

\(A=\frac{2016^{2016}+2}{2016^{2016}-1};;B=\frac{2016^{2016}}{2016^{2016}-3}\)\(A=\frac{\left(2016^{2016}-1\right)+2+1}{2016^{2016}-1};;B=\frac{\left(2016^{2016}-3\right)+3}{2016^{2016}-3}\)\(A=1+\frac{3}{2016^{2016}-1};;B=1+\frac{3}{2016^{2016}-3}\);;Vì \(2016^{2016}-1>2016^{2016}-3\)Nên\(\frac{3}{2016^{2016}-1}< \frac{3}{2016^{2016}-3}\)Vậy \(A< B\)

9 tháng 8 2016

Ta có:

A = \(\frac{2}{60.63}+\frac{2}{63.66}+...+\frac{2}{117.120}+\frac{2}{2016}\)

\(=2.\left(\frac{1}{60.63}+\frac{1}{63.66}+...+\frac{1}{117.120}\right)+\frac{2}{2016}\)

\(=2.\frac{1}{3}\left(\frac{3}{60.63}+\frac{3}{63.66}+...+\frac{3}{117.120}\right)+\frac{2}{2016}\)

\(=\frac{2}{3}.\left(\frac{1}{60}-\frac{1}{63}+\frac{1}{63}-\frac{1}{66}+...+\frac{1}{117}-\frac{1}{120}\right)+\frac{2}{2016}\)

\(=\frac{2}{3}.\left(\frac{1}{60}-\frac{1}{120}\right)+\frac{2}{2016}\)

\(=\frac{2}{3}.\frac{1}{120}+\frac{2}{2016}\)

\(=\frac{1}{180}+\frac{2}{2016}\)

B = \(\frac{5}{40.44}+\frac{5}{44.48}+...+\frac{5}{76.80}+\frac{5}{2016}\)

\(=\frac{5}{4}.\left(\frac{4}{40.44}+\frac{4}{44.48}+...+\frac{4}{76.80}\right)+\frac{5}{2016}\)

\(=\frac{5}{4}.\left(\frac{1}{40}-\frac{1}{44}+\frac{1}{44}-\frac{1}{48}+...+\frac{1}{76}-\frac{1}{80}\right)+\frac{5}{2016}\)

\(=\frac{5}{4}.\left(\frac{1}{40}-\frac{1}{80}\right)+\frac{5}{2016}\)

\(=\frac{5}{4}.\frac{1}{80}+\frac{5}{2016}\)

\(=\frac{1}{64}+\frac{5}{2016}\)

Vì \(\frac{1}{64}>\frac{1}{180}\) và \(\frac{5}{2016}>\frac{2}{2016}\) nên B > A

Vậy B > A

9 tháng 8 2016

Thanks nhiều nhé

May mà đc cậu giúpNguyễn Huy Tú

1 tháng 5 2018

\(A=\frac{2016^{2016}-1+3}{2016^{2016}-1};B=\frac{2016^{2016}-3+3}{2016^{2016}-3}\)

\(A=\frac{2016^{2016}-1}{2016^{2016}-1}+\frac{3}{2016^{2016}-1};B=\frac{2016^{2016}-3}{2016^{2016}-3}+\frac{3}{2016^{2016}-3}\)

\(A=1+\frac{3}{2016^{2016}-1};B=1+\frac{3}{2016^{2016}-3}\)

Vì \(\frac{3}{2016^{2016}-1}< \frac{3}{2016^{2016}-3}\)

\(\Rightarrow1+\frac{3}{2016^{2016}-1}< 1+\frac{3}{2016^{2016}-3}\)

\(\Rightarrow A< B\)

1 tháng 5 2018

\(A=\frac{2016^{2016}+2}{2016^{2016}-1}=\frac{2016^{2016}-1+3}{2016^{2016}-1}=1+\frac{3}{2016^{2016}-1}\)

\(B=\frac{2016^{2016}}{2016^{2016}-3}=\frac{2016^{2016}-3+3}{2016^{2016}-3}=1+\frac{3}{2016^{2016}-3}\)

Do  \(\frac{3}{2016^{2016}-1}>\frac{3}{2016^{2016}-3}\)

\(\Rightarrow1+\frac{3}{2016^{2016}-1}>1+\frac{3}{2016^{2016}-3}\)

\(\Rightarrow A>B\)

Vậy \(A>B\)

Chúc bạn học tốt !!! 

12 tháng 8 2016

Ta có : \(\frac{n-1}{n!}=\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\) với n là số tự nhiên khác 0

Khi đó : \(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{2015}{2016!}\)

\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+...+\frac{1}{2015!}-\frac{1}{2016!}\)

\(=1-\frac{1}{2016!}< 1\)

Lại có B > 1

=> A < B

11 tháng 4 2016

A và B= nhau

11 tháng 4 2016

to dong y voi cau traloi cua than dong dat viet