K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

\(A=\frac{1990^{10}+1}{1990^{11}+1};B=\frac{1990^{11}+1}{1990^{12}+1}\)

Ta có: 

\(A=\frac{10\cdot\left(1990^{10}+1\right)}{10\cdot\left(1990^{11}+1\right)}\)

\(\Rightarrow A=\frac{1990^{11}+10}{1990^{12}+10}\)

\(\Rightarrow A=\frac{1990^{11}+1+9}{1990^{12}+1+9}\)

\(\Rightarrow A< B\)

21 tháng 2 2023

A=B vì 10⋮1 nên A=1/10 và B=1/10.

29 tháng 12 2022

a)A = B

b)A>B

29 tháng 12 2022

bạn ơi , phải giải thích chứ sao mà hiểu được

Giải:

a) Gọi dãy đó là A, ta có:

\(A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\) 

\(2A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\) 

\(2A-A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\right)\) 

\(A=\dfrac{1}{2}-\dfrac{1}{2^{2014}}\) 

Vì \(\dfrac{1}{2}< 1;\dfrac{1}{2^{2014}}< 1\) nên \(\dfrac{1}{2}-\dfrac{1}{2^{2014}}< 1\) 

\(\Rightarrow A< 1\) 

b) \(A=\dfrac{10^{11}-1}{10^{12}-1}\) và \(B=\dfrac{10^{10}+1}{10^{11}+1}\) 

Ta có:

\(A=\dfrac{10^{11}-1}{10^{12}-1}\) 

\(10A=\dfrac{10^{12}-10}{10^{12}-1}\) 

\(10A=\dfrac{10^{12}-1+9}{10^{12}-1}\) 

\(10A=1+\dfrac{9}{10^{12}-1}\) 

Tương tự:

\(B=\dfrac{10^{10}+1}{10^{11}+1}\) 

\(10B=\dfrac{10^{11}+10}{10^{11}+1}\) 

\(10B=\dfrac{10^{11}+1+9}{10^{11}+1}\) 

\(10B=1+\dfrac{9}{10^{11}+1}\) 

Vì \(\dfrac{9}{10^{12}-1}< \dfrac{9}{10^{11}+1}\) nên \(10A< 10B\) 

\(\Rightarrow A< B\)

4 tháng 5 2021

Ta có:

\(A=\dfrac{7\left(4-7^{2020}\right)}{7^{2021}}+\dfrac{5+7^{2021}}{7^{2021}}\)

\(A=\dfrac{28-7^{2021}+5+7^{2021}}{7^{2021}}=\dfrac{33}{7^{2021}}\)

Ta có: \(B=\dfrac{7^2}{7^{2021}}=\dfrac{49}{7^{2021}}\)

=> B>A

 

4 tháng 5 2021

Thank you☺

20 tháng 8 2021

2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

              \(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)

Vậy \(2^{332}< 3^{223}\)

20 tháng 8 2021

1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)

\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)

Nên suy ra \(10A>10B\Rightarrow A>B\)

13 tháng 7 2018

1. 5/18 và 13/12

Ta có 5/18 =5.2/18.2=10/36

13/12=13.3/12.3=39/36

Vì 10/36<39/36

Nên 5/18<13/12

4/1 và 8/11

Ta có 4/1=4.11/1.11=44/11

Vì 44/11 > 8/11

Nên 4/1>8/11

2. 5/18 và 13/12

Ta có 5/18=5.13/18 =65/18

13/12=13.5/12=65/12

Vì 65/18<65/12

Nên 5/18<13/12

4/1 và 8/11

Ta có 4/1=4.2/1.2=8/2

Vì 8/2>8/11

Nên 4/1>8/11

3. 5/18 và 13/12

Ta có 5/18<1

13/12>1

Nên 5/18<13/12

4/1 và 8/11

Ta có 4/1>1

8/11<1

Nên 4/1>8/11

\(10A=\dfrac{10^{2021}+1+9}{10^{2021}+1}=1+\dfrac{9}{10^{2021}+1}\)

\(10B=\dfrac{10^{2022}+1+9}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)

mà \(10^{2021}+1< 10^{2022}+1\)

nên A>B

8 tháng 7 2023

A = \(\dfrac{n^9+1}{n^{10}+1}\) 

\(\dfrac{1}{A}\) = \(\dfrac{n^{10}+1}{n^9+1}\) = n -  \(\dfrac{n-1}{n^9+1}\)

B = \(\dfrac{n^8+1}{n^9+1}\)

\(\dfrac{1}{B}\) = \(\dfrac{n^9+1}{n^8+1}\) =  n - \(\dfrac{n-1}{n^8+1}\)

Vì n > 1 ⇒ n - 1> 0

       \(\dfrac{n-1}{n^9+1}\) < \(\dfrac{n-1}{n^8+1}\)

⇒ n - \(\dfrac{n-1}{n^9+1}\) > n - \(\dfrac{n-1}{n^8+1}\)⇒ \(\dfrac{1}{A}>\dfrac{1}{B}\)

⇒ A < B 

 

    

10 tháng 5 2021

a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)

b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)