Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1000^9+2}{1000^9-1}=\frac{1000^9-1+3}{1000^9-1}=\frac{1000^9-1}{1000^9-1}+\frac{3}{1000^9-1}=1+\frac{3}{1000^9-1}\)
\(B=\frac{1000^9+1}{1000^9-2}=\frac{1000^9-2+3}{1000^9-2}=\frac{1000^9-2}{1000^9-2}+\frac{3}{1000^9-2}=1+\frac{3}{1000^9-2}\)
Vì \(1000^9-1>1000^9-2\Rightarrow\frac{3}{1000^9-1}< \frac{3}{1000^9-2}\Rightarrow1+\frac{3}{1000^9-1}< 1+\frac{3}{1000^9-2}\Rightarrow A< B\)
Vậy A < B
\(A=\frac{1000^{2004}+1}{1000^{2005}+1}\)
=> \(1000A=\frac{1000^{2005}+1000}{1000^{2005}+1}=1+\frac{999}{1000^{2005}+1}\)
\(B=\frac{1000^{2005}+1}{1000^{2006}+1}\)
=> \(1000A=\frac{1000^{2006}+1000}{1000^{2006}+1}=1+\frac{999}{1000^{2006}+1}\)
Vì: \(1000^{2006}+1>1000^{2005}+1\)
=> \(\frac{999}{1000^{2006}+1}< \frac{99}{1000^{2005}+1}\)
=> \(1+\frac{999}{1000^{2006}+1}< 1+\frac{99}{1000^{2005}+1}\)
=> 1000B < 1000A
=> B < A
Ta có:
11 < 10001000
22 < 10001000
33 < 10001000
....
999999 < 10001000
10001000 = 10001000
=> B = 11 + 22 + 33 + ...+ 999999 + 10001000 < 10001000 + ...+ 10001000 (Có 1000 số 10001000)
=> B < 1000.10001000 = 10001001 = A
Vậy B < A
Ta có:
11 < 10001000
22 < 10001000
............
999999 < 10001000
10001000 = 10001000
=> B = 11 + 22 + 33 + ...+ 999999 + 10001000 < 10001000 + ...+ 10001000 (Có 1000 số 10001000)
<=> B < 1000.10001000 = 10001001 = A
Vậy.................
hok tốt